DSC 190: Algorithms for Data Science

Arya Mazumdar

University of California San Diego

Winter 2021
Lecture 13
Data Streaming
Counting distinct items

- \(\text{stream } a_1, a_2, \ldots, a_n \rightarrow \text{Algorithm (low space)} \rightarrow \text{some output} \)

- \(a_1, a_2, \ldots, a_n \) a sequence of \(n \) elements
- Each \(a_i \) chosen from a set \(\Sigma \) of size \(m \)
- Say, \(\Sigma \equiv \{1, 2, 3, \ldots, m\} \)
- Find the number of distinct items in the stream
- Easy to do in \(O(m) \) space (store a \(m \) bit vector that records the elements appearing)
- Easy to do in \(O(n \log m) \) space (store each of the distinct elements seen)
- \(m \) and \(n \) are very large
Count-distinct: Intuition

- Let S be the set of distinct items in the sequence.
- We want to estimate $|S|$.
- Suppose (this is just a supposition) S were randomly chosen from \{1, 2, \ldots, m\}.
- Let min be the minimum element in the stream (in S).
- What is the expected value of min?

$$|S| = \frac{m + 1}{\mathbb{E}[\text{min}]} - 1$$

$$|S| \approx \frac{m}{\text{min}}$$
Count-distinct: Intuition

\[|S| = \frac{m + 1}{\mathbb{E}[\text{min}]} - 1 \]

If we keep an estimate of minimum of the stream, then we can calculate \(|S|\).

We can maintain min of the stream with only \(\log m\) memory.

Con: This method works for a random \(S\).

\[m = 10^{12} \]
\[n = 10^6 \]
\[\log m = 12. \]
Count-distinct: Algorithm

- Instead of tracking the minimum of values of the stream ...
- We hash the values, with a random hash \(h : \Sigma \rightarrow \{0, 1, \ldots, m - 1\} \) and ...
- Track the minimum of the hashed values

Con: We have to store the hash table. This will take \(m \log m \) space
Count-distinct: pairwise independent hashes

Derandomize the hashing:

- We randomly and uniformly select two integers a and b from $\{0, 1, \ldots, m - 1\}$
- We store only these two integers (storage $2 \log m$ bits)
- Define $h : \Sigma \rightarrow \{0, 1, \ldots, m - 1\}$ as

 $$h(x) = ax + b \mod m$$
Count-distinct: pairwise independent hashes

Properties of the hash:

- Uniformity: For an element x in the stream
 \[\Pr(h(x) = s) = \Pr(ax + b \mod m = s) = \Pr(b = s - ax \mod m) = \frac{1}{m} \]

- Pairwise independence: For any two distinct elements x, y in the stream
 \[\Pr(h(x) = s, h(y) = t) = \frac{\Pr(h(x) = s) \Pr(h(y) = t)}{\Pr([a, b]^T = [x, 1]^{-1} [s, t]^T \mod m)} \]
 \[= \frac{1}{m^2} \quad \left[\begin{array}{c} x \\ y \end{array} \right] \left[\begin{array}{c} a \\ b \end{array} \right] = \left[\begin{array}{c} s \\ t \end{array} \right] \mod m \quad \frac{ax + b = s}{\mod m} \quad ay + b = t \quad \mod m \]
This is called the Flajolet-Martin algorithm
Randomly select and store two integers \(a \) and \(b \) from
\(\{0, 1, \ldots, m - 1\} \)

\[
h(x) = ax + b \mod m
\]

For each element \(x \) in the stream
- Compute \(h(x) \)
- Track the minimum of the hash values (log \(m \) space)
- Declare \(|\hat{S}| = \frac{m}{\min} \)
Count-distinct: Analysis

Claim: With probability at least \(\frac{2}{3} \) we have

\[
\left| S \right| \leq \frac{m}{\min} \leq 6 \left| S \right|
\]

\[
\Pr(\frac{m}{\min} > 6\left| S \right|) = \Pr(\min \leq \frac{m}{6\left| S \right|}) = \Pr(\exists \text{ an element } x \text{ for which } h(x) < \frac{m}{6\left| S \right|}) \leq \left| S \right| \Pr(h(x) < \frac{m}{6\left| S \right|}) \leq \frac{\left| S \right|}{\frac{m}{6\left| S \right|}} = \frac{1}{6}
\]

estimate

6 - approximation

\[
\frac{m}{\min} > 6\left| S \right|
\]

\[
\frac{m}{\min} \leq \frac{1\left| S \right|}{6}
\]

\[
< 33\%
\]

Error 1:

Error 2:
Count-distinct: Analysis

Claim: With probability at least $\frac{2}{3}$ we have $\frac{|S|}{6} \leq \frac{m}{\text{min}} \leq 6|S|

- Let the distinct elements be $x_1, x_2, \ldots, x_{|S|}$

$$
\Pr\left(\frac{m}{\text{min}} < \frac{|S|}{6} \right) = \Pr\left(\min > \frac{6m}{|S|} \right) = \Pr(\forall k = 1, 2, \ldots, |S|, h(x_k) > \frac{6m}{|S|})
$$

- Define the indicator random variables $\chi_1, \chi_2, \ldots, \chi_{|S|}$ where

$$
\chi_k = \begin{cases}
0, & h(x_k) > \frac{6m}{|S|} \\
1, & \text{o.w.}
\end{cases}
$$
Count-distinct: Analysis

Claim: With probability at least $\frac{2}{3}$ we have $\frac{|S|}{6} \leq \frac{m}{\min} \leq 6|S|

- Define the indicator random variables $\chi_1, \chi_2, \ldots, \chi_{|S|}$ where

$$\chi_k = \begin{cases} 0, & h(x_k) > \frac{6m}{|S|} \\ 1, & \text{o.w.} \end{cases}$$

- $\mathbb{E} \chi_k = \Pr(h(x_k) \leq \frac{6m}{|S|}) = \frac{6}{|S|}$
- $\var \chi_k = \frac{6}{|S|} \left(1 - \frac{6}{|S|}\right) < \frac{6}{|S|}$
- Let $X = \sum_k \chi_k$
- $\mathbb{E} X = |S| \cdot \frac{6}{|S|} = 6$

$$\Pr(X = 0) \quad \mathbb{E} X = 6$$

$$\mathbb{E} X = \sum_k \mathbb{E} \chi_k$$

$$= \sum_k \Pr(h(x_k) \leq \frac{6m}{|S|})$$

$$= \sum_k \frac{6 \mu_k \cdot \frac{1}{|S|}}{\mu_k}$$

$$= 18 \cdot \frac{6}{18} = 6$$
Count-distinct: Analysis

\[\text{Var} X = \mathbb{E}(X - \mathbb{E}X)^2 = \mathbb{E}\left(\sum_k (X_k - \mathbb{E}X_k)^2\right) \]

\[= \sum_k (X_k - \mathbb{E}X_k)^2 + 2 \sum_k \sum_l \mathbb{E}(X_k - \mathbb{E}X_k)(X_l - \mathbb{E}X_l) \]

\[= \sum_k \text{Var} X_k + 2 \sum_k \sum_l \mathbb{E}(X_k - \mathbb{E}X_k)\mathbb{E}(X_l - \mathbb{E}X_l) \]

\[\leq \frac{6}{|S|} |S| = 6 \]

\[\Pr \{X = 0\} \quad \text{if} \quad \mathbb{E}X = 6 \]

\[\text{Var} X \leq 6 \]
Count-distinct: Analysis

\[
\Pr\left(\frac{m}{\min} < \frac{|S|}{6} \right) = \Pr\left(\forall k = 1, 2, \ldots, |S|, h(x_k) > \frac{6m}{|S|} \right) = \Pr(X = 0)
\]

\[
\leq \Pr(|X - \mathbb{E}X| \leq 6) \leq \frac{\text{Var} X}{36} \leq \frac{6}{36} = \frac{1}{6}
\]

With probability at least \(\frac{2}{3} \) we have \(\frac{|S|}{6} \leq \frac{m}{\min} \leq 6|S| \)
The Heavy Hitters

- $A = a_1, a_2, \ldots, a_n$ a sequence of n elements
- Each a_i chosen from a set Σ of size m
- Given a parameter k:
 - Find all elements that appear at least $\frac{n}{k}$ times
The Heavy Hitters: Applications

- Computing popular products. A could be all of the page views of products on amazon.com yesterday. The heavy hitters correspond to frequently viewed items.

- Computing frequent search queries. For example, A could be all of the searches on Google yesterday. The heavy hitters are then searches made most often.

- Identifying heavy TCP flows. Here, A is a list of data packets passing through a network switch, each annotated with a source-destination pair of IP addresses. The heavy hitters are then the flows that are sending the most traffic. This is useful for, among other things, to identify denial-of-service attacks.

- Identifying volatile stocks. Here, A is a list of stock trades.

Special Case: Majority

- An array $A = a_1, a_2, \ldots, a_n$ a sequence of n elements with the promise that it has a majority element - a value that is repeated strictly more than $n/2$ times.
- Find that element
- Find that element in linear time
- Find the Majority element in linear time in a single left to right pass in “small” space
Majority: Algorithm

- Set count = 1, current = a_1
- For $i = 2, 3, \ldots$
 1. If count == 0 set current = a_i and count = 1
 2. Else If a_i == current then count = count + 1
 Else count = count -1
- Return current

If there is an majority element, that will be returned. Why?
Heavy Hitters: Approximate Version

\[\frac{n}{10} \text{ times} : \quad \text{list} = \frac{n}{2d} \text{ times} \]

- \(A = a_1, a_2, \ldots, a_n \) a sequence of \(n \) elements
- Given a parameter \(k \):
 - Find all elements that appear at least \(\frac{n}{k} - \epsilon n \) times

Why can we not set \(\epsilon = 0 \)?

The space requirement is growing with \(\frac{1}{\epsilon} \)

If we take \(\epsilon = \frac{1}{2k} \), space usage is \(\tilde{O}(k) \), all elements with frequency \(\frac{n}{k} \) is in the list and the elements in the list have frequency at least

\[
\frac{n}{k} - \frac{n}{2k} = \frac{n}{2k}
\]
Bigger problem: Estimating frequencies

\(a \ b \ b \ c \ d \ a \cdot b \ a \)

\(f_a = 3 \quad f_b = 3 \quad f_c = 1 \quad f_d = 1 \)

- \(A = a_1, a_2, \ldots, a_n \) a sequence of \(n \) elements
- Each \(a_i \) chosen from a set \(\Sigma \) of size \(m \)
- Frequency of an item \(f_j = |\{i : a_i = j, i = 1, 2, \ldots, n\}| \)

- Point Query: For \(j \in \Sigma \), find \(f_j \)
- Heavy Hitters: Find all elements \(j \) such that \(f_j \geq \phi n \) for a given \(\phi \in [0, 1] \)

Solution: Count-Min Sketch
Count-Min Sketch

\[\frac{n}{\varepsilon} - \frac{\varepsilon n}{\delta} \]

- Select an \(\varepsilon > 0 \) and \(\delta > 0 \): \(\varepsilon \) denotes the error-parameter, and \(\delta \) denotes our confidence.
- Select \(d = \ln \frac{1}{\delta} \) hash functions \(h_1, h_2, \ldots, h_d \) independently and randomly from a pair-wise independent hash family. Each \(h_i : \{1, 2, \ldots, m\} \rightarrow \{1, 2, \ldots, w\} \) where \(w = \frac{e}{\varepsilon} \).
- Initialize a table \(T \) of dimension \(d \times w \) all with 0.
- Update: At time \(t \), when \(a_t \) arrives, do the following.
 \[T(1, h_1(a_t)) = T(1, h_1(a_t)) + 1 \]
 \[T(2, h_2(a_t)) = T(2, h_2(a_t)) + 1 \]
 .
 .
 .
 \[T(d, h_d(a_t)) = T(d, h_d(a_t)) + 1 \]

http://research.neustar.biz/tag/count-min-sketch/

\[O\left(\frac{1}{\varepsilon} \log \frac{1}{\delta}\right) \]

\[d \times w = \frac{e}{\varepsilon} \log \frac{1}{\delta} \]
Count-Min Sketch: Point Query

- **Problem** For $i \in [m]$, estimate f_i
- **Output** An estimate \hat{f}_i such that $f_i \leq \hat{f}_i \leq f_i + \epsilon n$
- **Algorithm** Construct Count-Min sketch. Return

$$\min_{l=1,\ldots,d} T(l, h_l(i))$$

$h_1(i) \quad h_2(i) \quad h_3(i) \quad \ldots \quad h_d(i)$