
1

Robust Distributed Clustering with Redundant Data
Assignment

Saikiran Bulusu∗, Venkata Gandikota†, Arya Mazumdar‡, Ankit Singh Rawat§ and Pramod K. Varshney†
∗Electrical & Computer Engineering Department, Ohio State University, Columbus, OH 43210,

bs.kiran.bulsai@gmail.com
∗Electrical Engineering & Computer Science Department, Syracuse University, Syracuse, NY 13202,

gandikota.venkata@gmail.com, varshney@syr.edu
†The Halıcıoğlu Data Science Institute (HDSI), University of California, San Diego, arya@ucsd.edu

‡Google Research NY, New York, NY 10011, ankitsrawat@google.com

Abstract—In this work, we present distributed clustering algo-
rithms that can handle large-scale data across multiple machines
in the presence of faulty machines. These faulty machines can
either be straggling machines that fail to respond within a
stipulated time or Byzantines that send arbitrary responses. We
propose redundant data assignment schemes that enable us to
obtain clustering solutions based on the entire dataset, even
when some machines are stragglers or adversarial in nature. Our
proposed robust clustering algorithms generate a constant factor
approximate solution in the presence of stragglers or Byzantines.
We also provide various constructions of the data assignment
scheme that provide resilience against a large fraction of faulty
machines. Simulation results show that the distributed algorithms
based on the proposed assignment scheme provide good-quality
solutions for a variety of clustering problems.

I. INTRODUCTION

Clustering is one of the basic unsupervised learning tasks
used to infer informative patterns in data. The goal of clus-
tering algorithms is to find a subset of data points, called
cluster centers, that provide a good representation of the given
dataset. The cluster centers provide a partition of the given
set of data points that maximize similarity within a group
and minimize similarity across the groups. The quality of the
clusters is measured using a cost function of which, the k-
means and k-median are the most commonly used. The k-
median (k-means) clustering problem aims to find a set of
k centers that minimize the sum of the distances (sum of
the squared distances) of the individual points to their closest
cluster center. Since computing an optimal clustering solution
is an NP-hard problem [3], we will focus on approximate
solutions that aim to find a set of k-centers whose cost is
at most a small constant factor larger than the optimal [4].

Most widely used centralized clustering algorithms assume
that the entire data fits in a single machine and are no longer
desirable with the increasing size of the datasets. Hence,
there has been a significant interest in designing efficient
distributed algorithms for the clustering problem. The goal
is to design algorithms that can work with multiple machines
having access only to their respective local datasets. Under the
data-distributed setup, we assume one fusion center (FC) and

Dr. Mazumdar was supported by National Science Foundation under Grants
2217058 and 2112665.

m machines such that the dataset P consisting of n data points
is partitioned arbitrarily and distributed across the machines.
We denote these partitions by {P1, . . . , Pm} ⊆ P and assign
each of these subsets to a different machine. The individual
machines perform computation on the locally available data
points and transmit the obtained results to the FC. The FC then
aggregates these results to obtain the final clustering result. Re-
cent works have provided clustering algorithms in such data-
distributed setup with provably constant factor approximate
solutions [5]–[10].

Although the distributed model of computation improves
computational efficiency, it makes the system vulnerable to
faulty machines. The faulty machines may send information
with delay, may completely crash, or may send arbitrary (pos-
sibly adversarial) information, thereby drastically affecting the
quality of the computed solutions. In this work, we consider
two kinds of faulty machines which (i) may send information
with delay (or not send anything at all) (stragglers), or (ii)
may send arbitrary information (Byzantines).

Clustering with Stragglers: The stragglers correspond to
the machines that take significantly more time than expected
to respond. Several issues could lead to this behavior in
the machines, like power outages, congested communication
networks, or software updates running on the machines. One
naïve approach to handling straggling machines in certain
distributed tasks is to ignore them or rely on asynchronous
methods. There are established tradeoffs between the loss of
information due to ignoring the stragglers and the efficiency
of specific tasks such as computing distributed gradients
[11]–[16]. However, considering the presence of stragglers in
distributed clustering has received much less attention.

Clustering with Byzantines: Another challenge in the dis-
tributed setup is the presence of adversarial machines, also
known as Byzantines [17]. An adversarial attack usually has
the ability to influence the centers in one (or more) of the
clusters. Instead of sending the correct result of the computa-
tion to the FC, a Byzantine may send arbitrary values. A naïve
approach is to rely on simple distributed clustering methods
even when Byzantines are present [5], [6]. However, this
may lead to extremely poor-quality solutions being computed
by the distributed clustering algorithm due to the arbitrary
information being sent by the Byzantines. Another approach

2

is to provide filters to identify and remove the Byzantines
in the setup as proposed in the Byzantine machine learning
literature [18]–[22].

An alternate solution, that we adopt, is to introduce redun-
dancy in the data distributed to the machines. This ensures
that the information obtained from a subset of machines is
sufficient to compute the desired function on the entire dataset.
Multiple coding-based redundant data distribution schemes
have been proposed to mitigate the effect of stragglers [12],
[13], [23]–[26] and Byzantines [27]–[30] for computing linear
functions such as gradient aggregation in first-order opti-
mization methods. However, these techniques do not translate
well for clustering tasks where, unlike the prior works, the
responses from different machines may not be related.

In this work, we propose a data distribution scheme for
distributed clustering problems in the presence of stragglers
and Byzantines. The stragglers send the correct information
albeit with a delay. Hence, the FC knows the identities
of the stragglers. However, in the case of clustering with
Byzantines, the formulation deals with a more general scenario
where a subset of the machines are adversarial and can
send arbitrary information. Moreover, the identity of these
adversarial machines (Byzantines) is not known to the FC
which constitutes the main bottleneck in obtaining Byzantine
resilient clustering algorithms. We show that our proposed
data distribution scheme allows us to compute provably good-
quality cluster centers even in the presence of a relatively large
number of stragglers and/or Byzantines.

A. Our Results

In this work, we provide robust distributed clustering ap-
proaches that generate solutions with a cost at most c·OPT, for
a small approximation factor c ≥ 1, where, OPT denotes the
cost of the best clustering solution. Our algorithms are resilient
to machines that are either (i) stragglers, or (ii) Byzantines.

We propose a redundant data distribution scheme that allo-
cates a data point to multiple machines to mitigate the loss of
information (or misinformation) that arises due to the presence
of faulty machines. Following are our major contributions.

• We establish sufficient conditions on the data assignment
scheme that enables us to mitigate the effect of stragglers
and Byzantines to compute good-quality clusters (Prop-
erty III.1 and Property III.2).

• We design robust k-median and k-means clustering ap-
proaches that generate a constant factor approximate
solution in the presence of stragglers. Our approach also
extends to a more general class of squared ℓ2-fitting
problems known as subspace clustering. Theorem IV.2
shows that we can achieve an approximation factor of
roughly 3 for k-median clustering. This approach extends
naturally to k-means clustering (Theorem IV.3) and gives
an approximation factor close to 10 for k-means. The
results for k-means can be improved and generalized to
subspace clustering using a slight variant of the above
approach which is formalized in Theorem IV.5.

• Byzantines are much harder to handle since their identity
is unknown. Using a stronger data assignment scheme

compared to its straggler counterpart (Remark 1), we ob-
tain k-median (Theorem V.2) and k-means (Theorem V.6)
approaches that are guaranteed to achieve approxima-
tion factors close to 3 and 10 respectively. We also
improve upon the suggested algorithms to make them
computationally and storage efficient in Theorems V.3
and Theorem V.7.

• We provide various constructions of the assignment
scheme that satisfy the established conditions (Properties
III.1 and III.2) and provide resilience against a large frac-
tion of faulty machines while incurring little redundancy.

• We also consider the random straggler model motivated
by practical applications to obtain better trade-offs be-
tween the load per machine and the number of faults
tolerable. The various constructions and the tradeoffs they
present are summarized in Table I, where m are the
number of machines, n are the total number of points for
clustering, and t are the number of stragglers/Byzantines.

• Simulation results illustrate the excellent performance of
our algorithm.

Construction Fault model Load per machine
Thm VI.1 Random Adversarial O(nt logm

(m−t)
)

Thm VI.2 Explicit Adversarial O(n logm
m

)

Thm VII.1 Random Random O(
n log (n)
m−t

)

Thm VII.2 Explicit Random O(n logm
m−t

)

TABLE I: Summary of constructions of data assignment schemes.
Number of machines (m), Total number of data points (n), number

of faulty machines (t).

Setting Approximation Factor
Straggler resilient k-median (Thm IV.2) 3(1 + δ)
Straggler resilient k-means (Thm IV.3) 10(1 + δ)
Straggler resilient (r, k)-subspace clustering (Thm IV.5) (1 + 4δ)
Byzantine resilient k-median (Thm V.2) 3(1 + δ)

Improved Byzantine resilient k-median (Thm V.3)
(

2
1−1/k

+ 1
1−δ

)
(1 + 3δ)

Byzantine resilient k-means (Thm V.6) 10(1 + δ)

Improved Byzantine resilient k-means (Thm V.7)
(

8
1−1/k

+ 2
1−δ

)
(1 + 3δ)

TABLE II: Approximation factors (δ > 0).

B. Comparison with our Previous Works

In previous works [1], [2], we assumed that the machines
had the ability to compute exact solutions to the clustering
problem on the local datasets. In this work, we consider the
case when the machines can no longer compute the exact solu-
tion to the clustering problem. This reduces the computational
load at each machine with an increased approximation factor
(see Sections IV and V).

Moreover, in [2], we assumed that the FC computes the
local summaries to evaluate the quality of the data sent by each
local machine. Hence, the FC required the access to the entire
dataset P and had to estimate the cost of computing a cluster
on the local dataset Pi using the summaries sent by each
machine. In resource-constrained settings, such assumptions
can increase the computational load at the FC. In this work, we
assume that the FC does not have access to the entire dataset,
and hence, can not estimate the cost of computing a cluster

3

on the local dataset Pi using the summaries sent by each
machine. Hence, the analyses in [2] can no longer be utilized.
The first challenge in this work is the computation of coresets
by the FC as surrogates of the respective local datasets Pi.
These are efficiently computed in a streaming fashion using the
sensitivity sampling technique [31]. We utilize these coresets
to approximate the cost of clustering using the local datasets
Pi at the FC. Another challenge is the filtration step. In [2],
the filtering step depended on the cost of clustering computed
on the local datasets Pi. However, in this work, the filtering is
performed utilizing the cost of clustering using the coresets
computed by the FC and the local summaries sent by the
machines. Moreover, in [2], the weights for each of the points
in the summaries sent by the machines were obtained on the
respective local datasets Pi. However, crucially in this work,
the weights for each of the points in the local summaries sent
by the machines are estimated using the coresets computed
by the FC. Therefore, the third challenge is the estimation
of these weights. We show that these estimated weights are
a constant factor away from their intended value with high
probability. With these challenges, the analysis is no longer
straightforward and needs additional tools (see Sections V-B
and V-C). Thus, as described in Section I-A, our work in this
paper is much more general and extends our prior work [1],
[2] quite significantly.

C. Outline and Notation

The system model is described in Section II. Sufficient
conditions on the data assignment scheme are presented in
Section III. The proposed algorithm for straggler resilience
is given in Section IV. The k-median clustering problem
in the presence of stragglers is considered in Section IV-A
and extended for k-means clustering in Section IV-B. An
improvement and generalization of the k-means algorithm to
(r, k)-subspace clustering is presented in Section IV-C. The
algorithm for Byzantine resilience is given in Section V. The
k-median clustering problem is considered in Section V-A. In
Section V-B, we present a computationally efficient version
of the Byzantine resilient clustering algorithms. Here, we
address a few drawbacks of the previous approach and make
the algorithm more suitable for practice. These algorithms are
then extended to obtain Byzantine-resilient k-means algorithm
in Section V-C. Constructions of assignment matrices are
presented in Section VI. Extensions of the results to random
straggler model are presented in Section VII. Simulation re-
sults are provided in Section VIII, followed by our conclusions
in Section IX.
Notations: All vectors are denoted in boldface. We have
[n] = {1, . . . , n}, and 1n denotes a vector of all 1’s of length
n. d(x, y) denotes the Euclidean distance between two points
x, y ∈ Rd.

II. SYSTEM MODEL

Given a dataset with n points P = {p1,p2, . . . ,pn} ⊆ Rd,
distributed among m machines, the goal in clustering is to
find a set of k cluster centers C = {c1, c2, . . . , ck} ⊆ Rd

that closely represent the entire dataset. The quality of these

(a) Distributed clustering with stragglers.

(b) Distributed clustering with Byzantines.

Fig. 1: System Model. (Identities of the Byzantines are not known
to the FC.)

centers is usually measured by a cost function cost(P,C).
For k-median, the cost function is defined as cost(P,C) =∑

x∈P d(x, C), where d(x, C) := minc∈C d(x, c). The k-
means cost function for clustering is given by cost(P,C) =∑

x∈P d2(x, C). If the dataset P is weighted with an asso-
ciated non-negative weight function g : P → R+, the k-
median cost for the weighted dataset (P, g) is then defined
as cost(P, g, C) =

∑
x∈P g(x)d(x, C). The k-means cost for

(P, g, C) is defined analogously. Our goal is, therefore, to
obtain a set of k centers C that minimizes cost(P,C). For
any data point x ∈ P , and any set of centers C, we denote
its cluster center by C(x) := argminc∈C d(x, c). Also, for
any point set P , we denote the cluster of P associated with a
center c ∈ C by cluster(c, P) := {x ∈ P |C(x) = c}.

We consider the data-distributed clustering framework with
m machines W1, . . . ,Wm. Let Pi ⊆ P be the set of points
assigned to the machine Wi. To compute the cluster centers
in such data-distributed setups, the machines transmit a sum-
mary of their local data to the fusion center (FC). For the
simplicity of presentation, we assume each machine computes
the optimal clustering solution on its assigned data points.

Problem Statement: In this paper, the main goal is to de-
sign data-distributed robust clustering approaches. Specifically,
given a dataset P of n points in Rd, and distributed setup
with m machines where at most t machines are faulty (either
stragglers or Byzantines), the goal is to design a clustering
approach that generates a solution with the cost at most c·OPT,
with a small approximation factor c ≥ 1 for the k-median
and the k-means clustering problems. Here OPT denotes the
optimal cost of clustering the entire dataset.

We will consider the following two models of faults:
▶ Adversarial Fault Model: In this model, we assume that
any arbitrary set of at most t machines can be faulty (either
stragglers or Byzantines).
▶ Random Fault Model: In this model, we assume that
each machine can behave as a straggler (or Byzantine) in-
dependently with some fixed probability. This model is more
applicable in real-world settings to model faults as network

4

congestion or job scheduling on individual machines can be
considered to be an independent stochastic process.

While the focus of this work is on the adversarial fault
model, some of our results also extend to random faults model
(see Section VII for details).

In the presence of stragglers, the FC combines the local
summaries obtained from non-straggler machines to obtain
the summary of the global dataset which gives a constant
factor approximate solution (Fig. 1a). To mitigate the effect
of Byzantines, the FC ranks the received local summaries to
evaluate the quality of the data summary sent by each local
machine. An approximate solution to the clustering problem
can then be computed at the FC by aggregating the subset
of best summaries (Fig. 1b). We note that the identity of the
Byzantine machines is not known to the FC. Similar to the
result of [32], we show that the set of k-centers computed by
the machines summarizes their local dataset. Our results also
extend trivially when machines provide approximate clustering
solutions as a summary.

Next, we provide some definitions and results that are helpful
for the presentation in the rest of this paper.

A. Preliminaries
Definition II.1 ((r, k)-subspace clustering). Given a dataset
P ⊂ Rd find a set of k-subspaces (linear or affine) L =
{Li}ki=1, each of dimension r, that minimizes cost(P,L) :=∑n

i=1 minL∈L d2(pi, L).

Note that for r = 0, this is exactly the k-means problem de-
scribed above. Another special case, when k = 1, is known as
principal component analysis (PCA). Another closely related
problem is the k-medians problem defined as follows:

Definition II.2 (k-medians clustering). Given a dataset P ⊂
Rd find a set of k-centers C = {ci}ki=1, each of that minimizes
cost(P,C) :=

∑n
i=1 minc∈C d(pi, L).

For any α ≥ 1, we define an α-approximate solution to a
clustering problem with cost function defined by cost(·, ·) as
follows:

Definition II.3 (α-approximate solution). For any α > 1, the
set of k cluster centers C, |C| = k, is an α-approximate
solution to the k-center clustering problem if the cost of
clustering P with C, cost(P,C), is at most α times the cost of
clustering with optimal set k-centers, cost(P,C) ≤ α · OPT.

The quality of the data summaries is captured by the notion
of a coreset. Informally, a coreset is a small weighted set of
representative points of the dataset that closely approximates
the cost of clustering on any set of k centers.

Definition II.4 (ϵ-coreset, [33]). Let ϵ ≥ 0. For a dataset P , an
ϵ-coreset with respect to a cost function cost(·, ·) is a weighted
dataset S with an associated weight function g : S → R+ such
that, for any set of k centers C, we have

(1− ϵ)cost(P,C) ≤ cost(S, g, C) ≤ (1 + ϵ)cost(P,C).

Using any off-the-shelf α-approximate solution to the clus-
tering problem on an ϵ-coreset of the dataset P yields a

good approximate solution on the entire dataset. This fact is
formalized by the following Theorem.

Theorem II.1 ([34]). Let (S, g) be an ϵ-coreset for a
dataset P with respect to the cost function cost(·, ·). Any α-
approximate solution to the clustering problem on input S, is
an α(1 + 3ϵ)-approximate solution to the clustering problem
on P .

Next, we present our approach to assigning data to different
machines with redundancy.

III. DATA ASSIGNMENT

The first step to obtaining robust distributed clustering in
the presence of faulty machines is the initial data assignment
to the machines. Specifically, every data point in the dataset
P is mapped to multiple machines by carefully employing
redundancy in the assignment process. Hence, each data point
affects the local computation performed on multiple machines
and the final clusters at the FC are obtained by taking into
account the contributions of most of the data points in P even
though some of the machines are faulty. We introduce the data
assignment scheme along with the resilience properties below.
This property enables the aggregation of local computations
from the non-straggling or honest machines at the FC and
preserves the relevant information present in the dataset P for
the clustering problems. The assignment scheme is utilized
to obtain good-quality solutions to k-median and k-means
clustering.

A. Straggler-resilient Data Assignment

Let A ∈ {0, 1}m×n be the binary assignment matrix where
the i-th row, ai, indicates the set Pi ⊆ P of points assigned
to machine Wi. Let R ⊂ [m] denote the set of non-straggler
machines. We assume that |R| ≥ m− t, where t < m denotes
an upper bound on the number of stragglers in the system.
For any such set of non-straggler machines R, we require the
assignment matrix A to satisfy the following property.

Property III.1 ((t, δ)-Straggler resilience property). Let δ > 0
be a given constant. The assignment matrix A ∈ {0, 1}m×n

has (t, δ)-straggler resilience if for every subset of m − t
rows R ⊆ [m], ∃ a recovery vector, b = (b1, . . . , b|R|)

T ∈
R|R|, bi > 0,∀i ∈ |R|, such that for all i ∈ [n],

1T
n≤

∑
i∈R

biai ≤ (1 + δ)1T
n , (1)

where ≤ indicates coordinate-wise inequality.

We remark that the straggler resilience property is sig-
nificantly different from that in [12] where the property
utilizes the fact that the gradients are related to each other
across different machines. For instance, in gradient coding,
the recovery vector b can be arbitrary, whereas, we require it
to be strictly non-negative. Furthermore, for gradient coding,
the error is measured in terms of ℓ2 norm whereas we need
an ℓ∞ bound on the error.

Utilizing the combinatorial characterization for the assign-
ment scheme given by Property III.1, the information received

5

from the non-straggler machines can be combined to generate
close to optimal clustering solutions using the following result.

Lemma III.1. Let P ⊂ Rd be a dataset distributed across m
machines using a (t, δ)-straggler resilient assignment matrix
A that satisfies Property III.1 . Let R be any set of m − t
machines. For any δ > 0, let b ∈ R|R| be the recovery vector
corresponding to R. Then, for any set of k centers C ⊂ Rd,
any weight function g : P → R,

cost(P, g, C) ≤
∑
i∈R

bicost(Pi, g, C) ≤ (1 + δ)cost(P, g, C).

Proof. Here, we prove the result for the d2(·, ·) cost function,
and the proof extends similarly to d(·, ·) as well. The proof
is independent of the choice of the distance function, and we
only use properties of the assignment matrix. First note that,∑

i∈R
bicost(Pi, g, C) =

∑
i∈R

bi
∑
p∈Pi

g(p)d2(p, C)

=
∑
i∈R

bi
∑
j∈[n]

Ai,jg(pj) d
2(pj , C)

=
∑
j∈[n]

g(pj) d
2(pj , C)

∑
i∈R

biAi,j . (2)

From Property III.1 we know that for any j ∈ [n],∑
i∈R biAi,j ≤ 1+δ. Combining this fact with (2), we obtain∑
i∈R

bicost(Pi, g, C) =
∑
j∈[n]

g(pj) d
2(pj , C)

∑
i∈R

biAi,j

≤ (1 + δ)
∑
j∈[n]

g(pj) d
2(pj , C)

= (1 + δ) · cost(P, g, C)

Similarly, Property III.1 ensures that for any j ∈ [n],∑
i∈R biAi,j ≥ 1. Utilizing this fact in (2) gives us the desired

lower bound as follows.∑
i∈R

bicost(Pi, g, C) =
∑
j∈[n]

g(pj) d
2(pj , C)

∑
i∈R

biAi,j

≥
∑
j∈[n]

g(pj) d
2(pj , C) = cost(P,C).

B. Byzantine-resilient Data Assignment

Similar to the straggler resilient data assignment, we pro-
pose a modified data assignment to the machines to mitigate
the effect of Byzantines. Let A ∈ {0, 1}m×n denote the binary
assignment matrix whose i-th row, ai, indicates the set Pi ⊆ P
of points assigned to machine Wi. Let R ⊂ [m] denote
the set of honest (non-Byzantine) machines. We assume that
|R| ≥ m − t, where t < m denotes an upper bound on the
number of Byzantines in the system. For any such set of honest
machines R, we require the assignment matrix A to satisfy the
following property.

Property III.2 ((t, δ)-Byzantine resilience property). Let δ >
0 be a given constant. The assignment matrix A ∈ {0, 1}m×n

has (t, δ)-Byzantine resilience if ∃ a reconstruction coefficient
ρ > 0, such that for any subset of m− t rows R ⊆ [m],

1T
n≤ρ

∑
i∈R

ai ≤ (1 + δ)1T
n , (3)

where ≤ indicates coordinate-wise inequality.

Remark 1. The Byzantine-resilience property is much stronger
than the straggler resilience property introduced in Property
III.1. For straggler resilience, it is sufficient to have some non-
negative linear combination of the rows (corresponding to the
non-straggler machines) that is close to the all-ones vector.
However, for Byzantine resilience, we need all these linear
combinations to be uniform and non-negative. Further, we also
need this reconstruction factor to be the same across all subsets
of Byzantines. While the latter condition is not strictly needed,
it simplifies the proofs and the algorithm.

The information received from the honest machines is
combined using the following lemma to generate a close-to-
optimal clustering solution.

Lemma III.2. Let R ⊆ [m] be any set of m − t indices.
Let ρ be the reconstruction coefficient of the (t, δ)-Byzantine
resilient assignment matrix. Then, for any set of centers C, we
have cost(P,C) ≤

∑
i∈R ρ cost(Pi, C) ≤ (1 + δ)cost(P,C).

Proof. The proof is analogous to that of Lemma III.1 and
follows based on the combinatorial characterization for the
assignment scheme enforced by Property III.2.

IV. STRAGGLER RESILIENT CLUSTERING

In this section, we present straggler resilient clustering tech-
niques using the redundant data distribution scheme described
above. In Section IV-A, we present the k-median clustering
algorithm that is extended in a straightforward manner to the
k-means setting in Section IV-B. This algorithm is improved
in Section IV-C, where we present a general algorithm for the
(r, k)-subspace clustering.

A. Straggler-Resilient Distributed k-median Clustering

Dataset P is distributed across m machines using a (t, δ)-
straggler resilient assignment matrix A that satisfies Property
III.1. Each non-straggling machine sends a set of weighted k-
median centers of their local datasets which when aggregated
at the FC gives a summary for the entire dataset. Hence,
the weighted k-median clustering on this summary at the FC
provides a good-quality solution for the entire dataset P . In
Algorithm 1, we provide the above-discussed steps in detail.

Before we state the theorem that quantifies the quality of the
clustering solution Ĉ provided by Algorithm 1 on the entire
dataset P , we present the following lemma where we show
that the cost incurred by the weighted dataset Y is close to
the cost incurred by P for any set of k centers C, which is
necessary to prove the theorem.

1In general, if y ∈ Yi1 ∩ Yir ∩ . . . ∩ Yir , then g(y) =
∑r

j=1 bij gij (y).

6

Algorithm 1 Straggler-resilient distributed k-median cluster-
ing

1: Initialize: A collection of n data points P ⊂ Rd

2: Allocate P to m machines according to a (t, δ)-straggler
resilient matrix A.

3: Let Pi ⊂ P be the set of points assigned to machine Wi

4: Each machine Wi computes a k-median solution, Yi, on
set Pi.

5: Define gi : Yi → R as gi(y) = |cluster(y, Pi)|, for every
y ∈ Yi

6: FC collects {(Yi, gi)}i∈R from the non-straggling ma-
chines, for some R ⊆ [m], |R| ≥ m− t

7: Let Y =
⋃

i∈R Yi. Using the recovery vector b, define
g : Y → R such that g(y) = bigi(y),∀y ∈ Yi and i ∈ R1

8: Return Ĉ, the k-median solution on (Y, g).

Lemma IV.1. For k-median clustering, for any set of k-
centers C ⊂ Rd, we have

cost(P,C)−
∑
i∈R

bicost(Pi, Yi) ≤ cost(Y, g, C)

≤ 2(1 + δ)cost(P,C).

Proof of Lemma IV.1 is presented in Appendix, Section A.

Theorem IV.2. Let C∗ be the optimal set of k-median centers
for dataset P . Then, Algorithm 1 on dataset P returns a set
of centers Ĉ such that cost(P, Ĉ) ≤ 3(1 + δ)cost(P,C∗).

Proof of Theorem IV.2. Utilizing the lower bound from
Lemma IV.1 with C = Ĉ, we have

cost(P, Ĉ) ≤ cost(Y, g, Ĉ) +
∑
i∈R

bicost(Pi, Yi)

(a)

≤ cost(Y, g, C∗) +
∑
i∈R

bicost(Pi, C
∗)

(b)

≤ 2(1 + δ)cost(P,C∗) + (1 + δ)cost(P,C∗),
(4)

where (a) follows from the fact that Ĉ and Yi are the optimal
set of centers for the weighted dataset (Y, g) and the partial
dataset Pi, respectively. For (b), we utilize the upper bound in
Lemma IV.1 and Lemma III.1 with C = C∗.

Note that the summary computed at the FC uses the
weighted set (Y, g) which is constructed only from the in-
formation sent by the non-straggling nodes. Also, the data
assignment scheme initially used to distribute the data satisfies
the Property III.1. Hence, from Theorem IV.2, we observe
that the FC is able to construct a good summary of the entire
dataset P despite the presence of the stragglers. Moreover, this
summary is sufficient to generate a good quality k-median
clustering solution corresponding to P , i.e., the summary
generates a constant factor approximate solution.
Remark 2. Suppose the honest machines and the FC are unable
to compute the exact k-median clustering solution as required
in Step 4 and Step 8 of Algorithm 1, but instead produce
an α-approximate solution (such as in [35]), then this slight

variant of Algorithm 1 returns a set of k-centers Ĉ such that
cost(P, Ĉ) ≤ α(1+δ)(2+α)cost(P,C∗), even in the presence
of t stragglers. See Appendix A for the complete proof.
Remark 3 (Time Complexity). The workers and the FC may
use the O(1)-approximate k-medians clustering algorithm of
[36] that runs in time O(|Pi|d) at the worker nodes, and
O(mkd) time at the FC.

B. Straggler-Resilient Distributed k-means Clustering

Observe that the above-described algorithms for distributed
k-median clustering in the presence of stragglers can be gener-
alized to other classical cost functions to yield algorithms such
as for the k-means clustering algorithm. The key observation
that we use to extend the above-described algorithms is that
the distance function d2(·, ·) satisfies a scaled version of the
triangle inequality, i.e., for any a,b, c ∈ Rd,

d2(a,b) ≤ 2(d2(a, c) + d2(b, c)). (5)

We use a strategy similar to Algorithm 1 to compute the k-
means clustering solution in the presence of stragglers. We
observe that if each local machine can compute an exact (or
approximate) k-means solution on their local datasets, then it
can be suitably combined using the recovery vector to obtain
a constant factor approximate k-means solution to the global
dataset. Algorithm 2, does exactly this, where in Step 4 of
Algorithm 1, each machine Wi sends a k-means solution Yi

corresponding to Pi weighted accordingly.

Algorithm 2 Straggler-resilient distributed k-means clustering

1: Initialize: A collection of n data points P ⊂ Rd

2: Allocate P to m machines according to a (t, δ)-straggler
resilient matrix A.

3: Assign the set of points Pi ⊂ P to machine Wi

4: Each machine Wi computes an α-approximate k-means
solution Yi on set Pi. Let gi : Yi → R as gi(y) =
|cluster(y, Pi)|, for every y ∈ Yi

5: FC collects {(Yi, gi)}i∈R from the non-straggling ma-
chines

6: Let Y =
⋃

i∈R Yi. Using the recovery vector b, define
g : Y → R such that g(y) = bigi(y),∀y ∈ Yi and i ∈ R

7: Return Ĉ, the α-approximate k-means solution on (Y, g).

The performance guarantees of Algorithm 2 can be stated
as follows:

Theorem IV.3. Let C∗ be the optimal set of k-means centers
for dataset P . Then, Algorithm 2 on dataset P returns a
set of centers Ĉ such that cost(P, Ĉ) ≤ 2α(3 + 2α)(1 +
δ)cost(P,C∗).

The proof is very similar to that of Theorem IV.2, and can
be found in Appendix B.

C. Straggler-Resilient Distributed (r,k)-Subspace Clustering

Note that the approximation factor of over 10 obtained using
Algorithm 2 is quite prohibitive. We observe that Algorithm 2
succeeds because the weighted centers (Yi, gi) sent by the

7

local machines Wi are in fact a coreset of the local dataset Pi

in a weak sense 2. We leverage this observation to present a
variant of Algorithm 2 that is computationally more efficient
and also guarantees an improved approximation factor. In
Algorithm 3, each machine sends a δ-coreset of its local
dataset instead of an exact k-means solution. We now show
that this small change can yield a better approximation factor
and more general results.

In this section, we present a straggler resilient algorithm
for a general class of squared ℓ2 fitting problems, known as
(r, k) subspace clustering problems where the goal is to find
k subspaces each of dimension at most r that best fit the data.
Note that the subspace clustering problem covers both the k-
means and the principal component analysis (PCA) problems
as special cases.

Algorithm 3 Straggler-resilient distributed (r, k)-subspace
clustering

1: Initialize: A collection of n data points P ⊂ Rd

2: Allocate P to m machines according to a (t, δ)-straggler
resilient matrix A.

3: Assign the set of points Pi ⊂ P to machine Wi

4: Each machine Wi computes δ-coreset (Yi, gi) of Pi.
5: FC Collects {(Yi, gi)}i∈R from the non-straggling ma-

chines
6: Let Y =

⋃
i∈R Yi. Using the recovery vector b, define

g : Y → R such that g(y) = bigi(y),∀y ∈ Yi and i ∈ R
7: Return Ĉ, the set of r-subspaces that is an α-approximate

solution to the (r, k)-subspace clustering on input (Y, g).

In the following lemma, we show that the cost incurred
by the aggregated weighted dataset (Y, g) is close to the cost
incurred by P for any set of k centers C. In other words,
(Y, g) is a coreset of P .

Lemma IV.4. Let δ ∈ (0, 1). For any set of k-centers C ⊂ Rd,
we have

(1− δ)cost(P,C) ≤ cost(Y, g, C) ≤ (1 + 3δ)cost(P,C).

Proof. The proof is relegated to Appendix C.

The following result quantifies the quality of the clustering
solution Ĉ provided by Algorithm 3 on the entire dataset P .

Theorem IV.5. Let δ ∈ (0, 1). Let C∗ be the optimal solution
for (r, k)-subspace clustering on dataset P . Then, Algorithm 3
on dataset P returns a set of k subspaces Ĉ such that
cost(P, Ĉ) ≤ α(1 + 4δ)cost(P,C∗).

Proof. From the bounds in Lemma IV.4, we have

cost(P, Ĉ)
(a)

≤ cost(Y, g, Ĉ)

1− δ

(b)

≤ α

1− δ
cost(Y, g, C∗)

(c)

≤ α(1 + 3δ)

1− δ
cost(P,C∗) ≤ α(1 + 4δ)OPT, (6)

2the cost of clustering using the weighted set (Y, g) is close to the cost of
clustering using the entire dataset P albeit with an offset (Lemma A.3)

where (a) and (c) follow from Lemma IV.4, and (b) follows
from the fact that FC computes an α-approximate k-means
clustering on (Y, g).

Coreset constructions for various clustering algorithms with
squared ℓ2 cost were considered in [37], [38]. There is a
long line of work that has focused on constructing coresets
for subspace clustering and for the k-means problems [34],
[37], [39], [40]. Prior to the work of [41], the size of the
coresets was dependent on the dimension of the problem
d. However, in [34], first coresets of dimension independent
sizes were provided. In particular, [34] constructed ϵ-coresets
of size O(k/ϵ) and Õ(k3/ϵ4) for subspace and k-means
clustering, respectively. Later, [42], [43] improved the coreset
sizes to poly(k/ϵ) for the subspace clustering problem and
was further reduced to Õ(k/ϵ4) for k-means and k-median
problems by [44]. The current state-of-the-art coreset sizes are
Õ(kϵ−2 ·min{ϵ−z, k}) where z = 2 for k-means and z = 1
for k-median problems as given in [45].

Therefore, Algorithm 3 obtains an approximation factor of
(1+4δ) when each machine communicates Õ(k/ϵ4) points to
the FC. Whereas, in Algorithm 2 each machine communicates
k points to obtain an approximation factor of 10(1 + δ). The
observation indicates that with an increase in communication,
we can obtain better accuracy.

V. BYZANTINE RESILIENT CLUSTERING

A. Byzantine Resilient Distributed k-Median Clustering

In this section, we design distributed clustering methods that
are robust to the presence of Byzantines. Since the Byzantines
can send arbitrary information, naive clustering algorithms
may lead to solutions that may be of poor quality (illustrated
in Section VIII).

We first present a simple solution that assumes sufficient
storage and computational power of the FC. Note that such
an assumption is not unrealistic as central servers are usually
quite powerful. However, the proposed algorithm is quite
computationally and storage intensive which makes it pro-
hibitive for practical applications with limited resources. We
later propose techniques to address this difficulty by incurring
slightly larger approximation factors.

The dataset P is distributed among the m machines using
the assignment matrix A which satisfies Property III.2. The
basic idea of the proposed algorithm is that each honest
machine sends a set of k-median centers of their respective
data subsets. Next, the FC combines the set of k-median
centers from all the machines and computes the respective
cost of clustering on them to gauge the quality of the centers
sent by each machine. The FC then computes a good-quality3

clustering solution for the entire dataset by filtering out the
summaries with larger cost. We present the aforementioned
steps in detail in Algorithm 4.

Remark 4 (Time Complexity). The workers and the FC use
the O(1)-approximate k-medians clustering algorithm of [36]
that runs in time O(|Pi|d) at the worker nodes, and O(mkd)

3good approximation factor

8

Algorithm 4 Byzantine-resilient distributed k-median cluster-
ing

1: Initialize: A collection of n vectors P ⊂ Rd

2: Allocate P to m machines according to a (t, δ)-Byzantine
resilient matrix A.

3: Assign the set of points Pi ⊂ P to machine Wi

4: Each honest worker Wi computes an α-approximate k-
median solution Yi on set Pi

5: Each honest worker Wi sends the set of points Yi to FC
6: Byzantine workers send an arbitrary set of k points.
7: FC computes & arranges received point sets in non-

decreasing order of cost(Pi, Yi).
8: Without loss of generality, assume cost(P1, Y1) ≤

cost(P2, Y2) ≤ . . . ≤ cost(Pm, Ym).
9: For each point y ∈ Yi, FC computes weight gi(y) =

|cluster(y, Pi)|.
10: Let Y =

⋃
i∈[m−t] Yi. Using ρ, define g : Y → R such

that g(y) = ρgi(y),∀y ∈ Yi

11: Return Ĉ, the α-approximate k-median solution on
(Y, g).

time at the FC. The FC takes additional O(mdk log k) time
to perform an the filtering in Step 7-9 .

We present the following intermediate result, which shows
that the cost incurred by the weighted summary Yi of machine
Wi on any set of k centers C is bounded by the cost of
clustering the local dataset Pi with C, and the quality of the
summary Yi. Note that these bounds hold irrespective of the
machine Wi being honest or Byzantine and rely on the fact
that the FC can correctly compute the weights gi(y).

Lemma V.1. For any i ∈ [m], the weighted point set (Yi, gi)
satisfies

cost(Pi, C)− cost(Pi, Yi) ≤ cost(Yi, gi, C)

≤ cost(Pi, C) + cost(Pi, Yi). (7)

Proof. The proof is relegated to Appendix D.

Lemma V.1 shows that the cost of clustering the weighted
data subset (Yi, gi) (where summary Yi is obtained from Wi

and weight function gi is computed at the FC), with any set
of k centers C, cost(Yi, gi, C) deviates from cost(Pi, C) by
an additive term of cost(Pi, Yi). The latter term quantifies the
quality of the summary Yi obtained from Wi. We assume that
this quantity can be computed (or approximated) by the FC.
This information is then used to filter out the summaries that
contribute to large cost of clustering. From these observations,
we get our main result that evaluates the quality of the
clustering solution, Ĉ, obtained by Algorithm 4 on the entire
dataset P .

Theorem V.2. Let C∗ be the optimal solution to the k-median
problem on point set P . Then, Algorithm 4 on dataset P
returns a set of k-centers Ĉ such that cost(P, Ĉ) ≤ 3α2(1 +
δ)cost(P,C∗), even in the presence of t Byzantines.

Proof of Theorem V.2. Let Ĉ be the set of k-centers returned
by Algorithm 4. From Lemma III.2, we have

cost(P, Ĉ) ≤
m−t∑
i=1

ρ cost(Pi, Ĉ),

utilizing the result from Lemma V.1 with C = Ĉ, we get

cost(P, Ĉ) ≤
m−t∑
i=1

ρ cost(Pi, Ĉ)

≤
m−t∑
i=1

ρ cost(Pi, Yi) +

m−t∑
i=1

ρ cost(Yi, gi, Ĉ).

Next, we note that for every Byzantine in j ∈ [m− t], there is
an honest machine i ∈ R with a higher cost, i.e. cost(Pi, Yi) ≥
cost(Pj , Yj), which yields the following.

cost(P, Ĉ) ≤
∑
i∈R

ρ cost(Pi, Yi) +

m−t∑
i=1

ρ cost(Yi, gi, Ĉ).

Since Yi is an α-approximate k-median solution on the partial
dataset Pi, we have cost(Pi, Yi) ≤ α cost(Pi, C

∗). Hence, we
have

cost(P, Ĉ) ≤ α
∑
i∈R

ρ cost(Pi, C
∗) +

m−t∑
i=1

ρ cost(Yi, gi, Ĉ).

We apply the result from Lemma III.2 to the first term.
Utilizing the definition of the cost function on a weighted
point set, cost(Y, g, Ĉ) and the α approximate solution Ĉ of
the weighted dataset (Y, g) in the second term, we obtain

cost(P, Ĉ) ≤ α(1 + δ)cost(P,C∗) + α cost(Y, g, C∗).

From the definition of the cost function, cost(Y, g, C∗), we get

cost(P, Ĉ) ≤ α(1 + δ)cost(P,C∗) + α

m−t∑
i=1

cost(Yi, ρgi, C
∗)

≤ α(1 + δ)cost(P,C∗) + α

m−t∑
i=1

ρ cost(Yi, gi, C
∗).

Next, applying the result from Lemma V.1 to the second
term above, we have

cost(P, Ĉ) ≤ α(1 + δ)cost(P,C∗) + α

m−t∑
i=1

ρ cost(Pi, Yi)

+ α

m−t∑
i=1

ρ cost(Pi, C
∗).

For the second term above, using a similar manipulation as
before, we obtain

cost(P, Ĉ) ≤ α(1 + δ)cost(P,C∗) + α2
∑
i∈R

ρ cost(Pi, C
∗)

+ α

m−t∑
i=1

ρ cost(Pi, C
∗),

9

applying Lemma III.2 to the second and third terms, we obtain

cost(P, Ĉ) ≤ α(1 + δ)cost(P,C∗) + α2(1 + δ)cost(P,C∗)

+ α(1 + δ)cost(P,C∗)

≤ 3α2(1 + δ)cost(P,C∗).

B. Improved Byzantine Resilient Distributed k-Median Clus-
tering

Recall that in the previous section, we assumed that the FC
can compute the local summaries to evaluate the quality of
the data sent by each local machine. In particular, we required
the FC to have access to the entire dataset P . The FC needs
them to estimate the cost of computing cluster Pi using Yi sent
by the machine Wi (Step 8 in Algorithm 4). This assumption
is generally reasonable since in most applications, the FC is
quite powerful and has access to the entire dataset. However,
in resource-constrained settings such assumptions increase the
computational load at the FC can be rather restrictive.

In this section, we discuss a simple technique to relax this
assumption. For any δ ∈ (0, 1), let (P̃i, wi) denote a δ-coreset
computed by the FC of dataset Pi, i ∈ [m]. One possible
approach to compute this efficiently in a streaming fashion
is by using the uniform sampling where a δ-coreset of a set
of n points is computed by only storing poly(kϵ−1) points as
given in [46]. Another possible approach is to use sensitivity
sampling techniques of [31], [47]. Specifically, the algorithm
of [31] only stores a small set of points, and computes a
good coreset using only the stored points. They show that
to compute a δ-coreset of a set of n points, it is sufficient to
only store O(δ−2dk log k) points. Therefore, the FC will only
need to store O(mdk log k) points in total. Using standard
dimension reduction techniques, we can further without loss
of generality assume that d = O(log n).

To improve Algorithm 4, the coreset (P̃i, wi) computed on
each dataset Pi (using sensitivity sampling [31]) is utilized to
approximate the cost of clustering pointset Pi with Yi, i ∈ [m].
Furthermore, the weights gi(y) for each y ∈ Yi are also
estimated using only the coreset points. This reduces the com-
putational load at the FC. In particular, estimating cost(Pi, Yi),
takes only O(k2 log |Pi|) time instead of O(k|Pi|). In the
following, we show that we still obtain a good approximation
for k-median clustering in the presence of Byzantines using
(P̃i, wi) instead of Pi. Furthermore, this coreset computation
at the FC can be done while assigning them to the machines.
The modified algorithm for distributed k-median clustering in
the presence of Byzantines is presented in Algorithm 5. For the
simplicity of presentation, we assume that machines and the
FC can compute the exact (i.e., α = 1) k-median solution on a
small dataset. The results extend trivially when in Step 5 and
Step 12, the machines and the FC compute an α-approximate
solution.

Theorem V.3. Let δ ∈ (0, 1). Let C∗ be the optimal solu-
tion to the k-median problem on point set P . Then, Algo-
rithm 5 returns a set of k-centers Ĉ such that cost(P, Ĉ) ≤

Algorithm 5 Computationally-efficient Byzantine-resilient
distributed k-median clustering

1: Initialize: A collection of n vectors P ⊂ Rd

2: Allocate P to m machines according to A with Prop-
erty III.2.

3: FC computes δ-coreset (P̃i, wi) from the streaming data
with respect to each Pi

4: Assign the set of points Pi ⊂ P to machine Wi

5: Each honest worker Wi computes k-median solution Yi

on set Pi

6: Each honest worker Wi sends the set of points Yi to FC
7: Byzantine workers send an arbitrary set of k points.
8: FC computes & arranges received point sets in non-

decreasing order of cost(P̃i, wi, Yi).
9: Without loss of generality, assume cost(P̃1, w1, Y1) ≤

cost(P̃2, w2, Y2) ≤ . . . ≤ cost(P̃m, wm, Ym).
10: For each point y ∈ Yi, FC computes weight g̃i(y) =∑

p∈cluster(y,P̃i)
wi(p).

11: Let Y =
⋃

i∈[m−t] Yi. Using ρ, define g̃ : Y → R such
that g̃(y) = ρg̃i(y),∀y ∈ Yi

12: Return Ĉ, the k-median solution on (Y, g̃).

(
2

1−1/k + 1
1−δ

)
(1 + 3δ)cost(P,C∗), even in the presence of

t Byzantines with probability 1− 1
k .

We now briefly sketch the proof of Theorem V.3. The formal
proof is presented in Appendix E.

The two main differences in Algorithm 5 compared to
Algorithm 4 are

1) The filtering of Byzantines in Step 8 is done with respect
to cost(P̃i, wi, Yi) instead of cost(Pi, Yi). Since (P̃i, wi)
is a δ-coreset of Pi, we incur at most a factor of (1 + δ)
in cost by making this change.

2) For any i ∈ [m − t], and y ∈ Yi, the quantity gi(y) =
|cluster(y, Pi)| is computed using the coreset P̃i instead
of the actual pointset Pi. We show that by adopting a
particular sensitivity-based i.i.d. sampling technique of
coreset construction, the estimate of g̃i is at most some
(1 + γ) factor away from its intended value with very
high probability, for some appropriately chosen value of
γ.

We now formalize the above two statements in the following
Lemmas and Observations.

Observation V.1. Let δ ∈ (0, 1). For any i ∈ [m] and any set
of k centers C, we have

|cost(P̃i, wi, C)− cost(Pi, C)| ≤ δcost(Pi, C)

The observation follows from the fact that (P̃i, wi) is a δ-
coreset of Pi

Lemma V.4. Let γ ≥ 1
k . For any i ∈ [m], and y ∈ Yi,

Pr[|g̃i(y)− gi(y)| ≥ γ gi(y)] ≤
1

k

Lemma V.4 therefore ensures the following:

10

Observation V.2. Let γ ≥ 1
k . For any i ∈ [m] and y ∈ Yi, let

gi(y) := |cluster(y, Pi)|. Then for any set of k centers C,

cost(Yi, gi, C) =
∑
y∈Yi

gi(y)d(y, C) ≤
∑
y∈Yi

1

1− γ
g̃i(y)d(y, C)

=
1

1− γ
cost(Yi, g̃i, C),

with probability at least 1− 1/k.

Using the two observations listed above, we get an equiva-
lent of Lemma V.1.

Lemma V.5. Let δ, γ ∈ (0, 1). For any i ∈ [m], the weighted
point set (Yi, g̃i) satisfies

(1− γ)cost(Pi, C)− 1− γ

1− δ
cost(P̃i, wi, Yi) ≤ cost(Yi, g̃i, C)

≤ (1 + δ)cost(Pi, C) + cost(P̃i, wi, Yi).

The proof of Theorem V.3 then follows similar to the proof
of Theorem V.2 using the adjusted Lemma V.5 instead of
Lemma V.1.

C. Byzantine Resilient k-means Clustering

Similar to Algorithm 2 for straggler resilient k-means
clustering, a simple modification can be made to Algorithm 4
to obtain a Byzantine-resilient distributed k-means algorithm
(Algorithm 6) with performance guarantees given in Theo-
rem V.6.

Algorithm 6 Byzantine-resilient distributed k-means cluster-
ing

1: Initialize: A collection of n vectors P ⊂ Rd

2: Allocate P to m machines according to A with Prop-
erty III.2.

3: Assign the set of points Pi ⊂ P to machine Wi

4: Each honest worker Wi computes k-means solution Yi on
set Pi

5: Each honest worker Wi sends the set of points Yi to FC
6: Byzantine workers send an arbitrary set of k unweighted

points.
7: FC computes & arranges received point sets in non-

decreasing order of cost(Pi, Yi).
8: Without loss of generality, assume cost(P1, Y1) ≤

cost(P2, Y2) ≤ . . . ≤ cost(Pm, Ym).
9: For each point y ∈ Yi, FC computes weight gi(y) =

|cluster(y, Pi)|.
10: Let Y =

⋃
i∈[m−t] Yi. Using ρ, define g : Y → R such

that g(y) = ρgi(y),∀y ∈ Yi

11: Return Ĉ, the k-means solution on (Y, g).

Theorem V.6. Let C∗ be the optimal solution to the k-means
problem on point set P . Then, Algorithm 6 returns a set of
k-centers Ĉ such that cost(P, Ĉ) ≤ 10α2(1 + δ)cost(P,C∗),
even in the presence of t Byzantines.

Moreover, similar to Algorithm 5, the FC can reduce its
computational and storage costs by computing δ-coresets for

k-means clustering of each local data set. Coresets obtained
by i.i.d. sensitivity sampling of the data in a streaming fashion
require O(δ−2mdk log k) points to be stored in total.

Algorithm 7 Computationally-efficient Byzantine-resilient
distributed k-means clustering

1: Initialize: A collection of n vectors P ⊂ Rd

2: Allocate P to m machines according to A with Prop-
erty III.2

3: FC computes weighted coreset (P̃i, wi) from the stream-
ing data with respect to each Pi

4: Assign the set of points Pi ⊂ P to machine Wi

5: Each honest worker Wi computes k-means solution Yi on
set Pi

6: Each honest worker Wi sends the set of points Yi to FC
7: Byzantine workers send an arbitrary set of k points.
8: FC computes & arranges received point sets in non-

decreasing order of cost(P̃i, wi, Yi).
9: Without loss of generality, assume cost(P̃1, w1, Y1) ≤

cost(P̃2, w2, Y2) ≤ . . . ≤ cost(P̃m, wm, Ym).
10: For each point y ∈ Yi, FC computes weight g̃i(y) =∑

p∈cluster(y,P̃i)
wi(p).

11: Let Y =
⋃

i∈[m−t] Yi. Using ρ, define g̃ : Y → R such
that g̃(y) = ρg̃i(y),∀y ∈ Yi

12: Return Ĉ, the k-means solution on (Y, g̃).

Theorem V.7. Let δ ∈ (0, 1). Let C∗ be the optimal so-
lution to the k-means problem on point set P . Then, Algo-
rithm 7 returns a set of k-centers Ĉ such that cost(P, Ĉ) ≤(

8
1−1/k + 2

1−δ

)
(1 + 3δ)cost(P,C∗), even in the presence of

t Byzantines with probability 1− 1
k .

The proofs of both Theorem V.6, and Theorem V.7 are
analogous to the k-median proof. In fact, they are verbatim
the same except for the use of scaled triangular inequality
(Eq. (5)) instead of standard triangle inequality used in the
proofs for their k-median counterparts.

VI. CONSTRUCTION OF DATA ASSIGNMENT MATRIX

In this section, we provide the approach for the construction
of the assignment matrix in the presence of stragglers and
Byzantines. Since Property III.2 for Byzantine resilience is
stronger than Property III.1, we will focus only on the con-
struction of assignment matrices A that satisfy the former. The
straggler resilience property of those matrices will follow from
the definition.

Let n be the number of data points in P , and m be the
number of machines. Let B ⊂ [m], |B| < t denote the set
of Byzantines, and let R = [m] \ B be the set of non-
Byzantines. For the simplicity of presentation, we assume
n = m. This assumption holds without loss of generality as
we can arbitrarily partition the dataset into m chunks of size
n/m each, and distribute each chunk as a single data point.

We now present the construction of various assignment
matrices A ∈ {0, 1}m×m that satisfy Property III.2, and hence
Property III.1 as well. The two parameters of importance when
constructing an assignment matrix are the load per machine

11

which is defined as the number of data points sent to each
machine (ℓ = maxi |Pi|), and the fraction of faulty machines
that can be tolerated (= t/m). For each of the constructions
provided below, we analyze the tradeoffs between these two
parameters.

A. Randomized Construction

In this section, we show that a random Bernoulli assignment
matrix satisfies Property III.2 albeit with slightly degraded
tradeoffs between ℓ and t.

Consider an m × m random Bernoulli assignment matrix
A where each entry Ai,j is set to 1 independently with some
probability p, and 0 otherwise.

Theorem VI.1. For any δ > 0, the Bernoulli assignment
matrix A with p = O(1

logm), satisfies Property III.2 with
probability at least 1−O(1

m), and is resilient to t = O(m
log2 m

)
Byzantines.

Proof. Proof is relegated to Appendix F.

Alternatively, Theorem VI.1 satisfies (t, δ)-Byzantine
resilience property with an expected load of ℓ =

O(mt(2+δ)2

δ2(m−t) logm). Note that Theorem VI.1 provides lesser
redundancy in the regime when t = o(m) compared to the
naïve solution of distributing all the points to all the machines
(for which ℓ = m).

B. Explicit Construction

We now present an explicit construction of an assignment
matrix that satisfies Property III.2. The construction is based
on expander graphs which were also used to construct explicit
data assignment schemes for gradient coding [23], [24].

Let G = (V,E) be a connected d-regular graph on m
vertices and let AG denote its adjacency matrix. Let λ1 ≥
λ2 ≥ . . . ≥ λm be the m real eigenvalues of AG. Define
the expansion parameter of graph G as λ = max{|λ2|, |λm|}.
We denote such d-regular graphs on n vertices with expansion
parameter λ as (n, d, λ)-expanders.

The double cover of a graph G̃ = (Ṽ , Ẽ) on n vertices,
is a bipartite graph G = (L ∪ R,E), on 2n vertices with
L = R = V . There is an edge (u, v) ∈ L × R in G if and
only if (u, v) ∈ Ẽ.

To construct our assignment matrix, we consider a bipartite
graph G = (L∪R,E) that is a double cover of an (m/2, d, λ)-
expander. The m×m assignment matrix A is obtained from
G by setting Au,v = 1 if and only if there is an edge between
(u, v) ∈ G for any u ∈ R and, v ∈ L. We now show that the
assignment matrix A obtained from G satisfies Property III.2
for any set of t Byzantines.

Theorem VI.2. For any δ > 0, the assignment matrix A
satisfies Property III.2 with t =

√
logm/ log logm, and

ℓ = O(logm).

The proof, presented formally in Appendix G, follows from
the fact that if G̃ is an expander graph, then its double cover
G satisfies the expander Mixing Lemma [48].

Theorem VI.3 (Expander Mixing Lemma [48]). For any
sets S and T in a (n, d, λ)-expander, we have |E(S, T) −
d
n |S||T || ≤ λ

√
|S||T |, where, E(S, T) denotes the number of

edges between sets S and T .

Using Expander Mixing Lemma, we can show that no vertex
in L is incident to a large fraction of vertices in any t subset of
R. This in turn translates to the fact that no column of A has
a large number of 1’s in any subset of t rows of A. Therefore,
removing any t rows of A keeps all the column weights within
a fixed range.

The existence of graphs with appropriate expansion prop-
erties then completes the proof. We use the constructions of
(n, d, λ)-expanders of [49], to get data assignment schemes
that are resilient to O(

√
logm) Byzantines with an overhead

of O(logm) data points per machine.

Theorem VI.4 ([49]). There exists a polynomial time algo-
rithm to construct (n, d, λ) = (2ℓ, ℓ− 1,

√
ℓ log3 ℓ).

In particular, the matrix obtained using a double cover of
an expander graphs of [49] gives a (t, δ)-Byzantine resilient
assignment matrix with δ = γ/(1 − γ), where γ = t

m +√
t log3 logm

logm , and ℓ = O(logm).

VII. RANDOM STRAGGLER MODEL

In this section, we consider the random fault model for
stragglers. In this model, we assume that each machine Wi,
for i ∈ [m] behaves as a straggler independently with some
fixed (known) probability pt.

Property VII.1 ((t, δ)- Random straggler resilience property).
Let δ > 0 be a given constant. The assignment matrix
A ∈ {0, 1}m×n has (t, δ)- random straggler resilience if for
a random subset of m − t rows R ⊆ [m] chosen i.i.d with
probability 1− pt, ∃ a recovery vector, b = (b1, . . . , b|R|)

T ∈
R|R|, bi > 0,∀i ∈ |R|, such that for all i ∈ [n],

1T
n≤

∑
i∈R

biai ≤ (1 + δ)1T
n , (8)

with probability at least 1− 1/m.

We note that the proofs of Lemma III.1, and hence
Lemma IV.1 hold with high probability for a random set R
given an assignment matrix A that satisfies Property VII.1.
Therefore, the guarantees of Theorems IV.2, Theorem IV.3,
and Theorem IV.5 continue to hold with high probability.

Constructions of matrices satisfying Property VII.1 are pre-
sented in Section VII-A and Section VII-B. We note that these
constructions provide better trade-off between the load per
machine to tolerate a constant fraction of random stragglers.

We also remark that the equivalent of Property III.2 for
random Byzantines is not sufficient to get provable guarantees
for the clustering algorithms described in Section V as we
strictly require Lemma III.2 to hold for any arbitrary set of
m − t indices for the proof of Theorem V.2. Therefore, the
random Byzantine model does not give us any advantage over
the adversarial constructions considered in Section VI.

12

A. Randomized Construction for Random Stragglers

We present a randomized construction of the assignment
matrix that satisfies Property III.1. For the construction of the
matrix, we assume a random straggler model, where every
machine acts as a straggler independently with probability pt.
Hence, the local computation from each machine is received
at the FC with probability 1− pt.

For some ℓ (to be chosen later), the (i, j)-th entry of
the assignment matrix, based on the random construction
discussed above, is defined as

Ai,j =

{
1 with probability pa = ℓ

m

0 otherwise.
(9)

For an appropriate choice of ℓ (and, hence, pa), we show
that the random matrix A satisfies Property III.1 with high
probability.

Theorem VII.1. For any δ > 0, the randomized assignment
matrix in (9) with ℓ = 6(2+δ)2

δ2 · log (
√
2m)

1−pt
satisfies Property

III.1 with probability at least 1− 1
m under the random straggler

model.

Proof. Proof is relegated to Appendix H.

Therefore, the random Bernoulli construction gives a (t, δ)-
random straggler resilient matrix with E[t] = mpt =
O(m) for a constant straggler probability for which E[ℓ] =
O((2+δ)2

δ2 log(
√
2m)).

B. Explicit Construction for Random Stragglers

Fractional Repetition Codes (FRC) have been well-studied
in [50] for straggler resilient gradient computations. In this
section, we show that the FRC scheme also satisfies Prop-
erty III.1 for random stragglers with high probability, and
hence provides redundant data assignment for straggler-
resilient clustering problems.

For simplicity, let us assume that we have m data points and
m machines. In FRC, the m data points are partitioned into
groups of size s (assume that s divides m), and each group
of data points is replicated across s machines. The assignment
matrix A for this scheme is given by

A =

1s×s 0s×s 0s×s . . . 0s×s

0s×s 1s×s 0s×s . . . 0s×s

...
...

...
. . .

...
0s×s 0s×s 0s×s . . . 1s×s

 , (10)

where 1s×s denotes an s× s matrix of all 1’s.
Let AR of size |R| × m denote the submatrix of honest

machines obtained by removing t rows from A uniformly at
random. We now show that the random matrix AR satisfies
Property III.1 with high probability.

Theorem VII.2. For any δ > 0, the FRC based assignment
matrix A with ℓ = s = O(logm), satisfies Property III.1 with
probability at least 1 − O(1

m) under the random straggler
model, and provides resilience against t = O(m) stragglers.

Proof. The proof is relegated to Appendix I.

(a) Ground Truth. (b) No Redundancy.

(c) p = 0.1. (d) p = 0.2.

Fig. 2: Performance of the proposed Straggler-resilient k-median
algorithm.

The FRS of Theorem VII.2 scheme gives a (t, δ)-random
straggler resilient matrix with ℓ = O

(
(2+δ)2

δ2
logm
(1−pt)

)
, and

E[t] = mpt. In particular, it provides good trade-off between
the load per machine ℓ = O(logm), and the number of
Byzantines tolerated, t = O(m).

Next, we empirically evaluate the performance of our al-
gorithms and show that they are robust to Byzantines (or
stragglers).

VIII. SIMULATION RESULTS

In this section, we demonstrate the performance of our
distributed k-median clustering algorithms that are resilient to
stragglers and Byzantines, respectively. We consider the syn-
thetic Gaussian dataset [51] with n = 5000 two-dimensional
points that are distributed among m = 10 machines.

A. Straggler-resilient Clustering

In this section, we illustrate the performance of our
straggler-resilient distributed k-median algorithm and bench-
mark it with the non-redundant data assignment scheme. We
consider t = 3 randomly chosen stragglers. We present the
results in Figures 2a, 2b, 2c, and 2d.

We plot the ground truth using the centroids provided in
the dataset in Fig. 2a with k-median clustering, for k = 15.
In Fig. 2b, we present the results by ignoring the local
computations from the stragglers, i.e., Algorithm 1 is used
without any redundant data assignment. We randomly partition
the n = 5000 data points among m = 10 machines. The
non-straggler machines send their respective k-median centers
to the FC. Then, the FC runs a k-median algorithm on the
k(m − t) centers obtained from the non-straggler machines.
From Fig. 2b, the set of poor quality k-centers obtained from
this scheme is noticeable.

13

Fig. 3: Cost of clustering in presence of stragglers.

(a) Ground Truth. (b) No Redundancy.

(c) p = 0.1. (d) p = 0.2.

Fig. 4: Performance of the proposed Byzantine-resilient k-median
algorithm.

In Fig. 2c, the result obtained by using Algorithm 1 is
shown. We choose the assignment matrix randomly with
p = Pr[Ai,j = 1] = 0.1. Hence, using this assignment matrix
ensures that each machine receives 500 data points on an
average which results in a non-redundant data assignment.
Lastly, in Fig. 2d, we show the effect of increasing the value
of p to 0.2. Therefore, the redundancy in the data assignment
increases which results in each machine receiving about 1000
data points. We observe that the results are very close to the
ground truth clustering presented in Fig. 2a.

In Fig. 3, the cost of clustering at the FC as a function of the
redundancy of the data assignment scheme for different values
of stragglers in the network is shown. We set the total number
of machines as 10. For this experiment, we consider BIRCH
[52] 2-dimensional dataset with 100,000 points and k = 100.
The scheme with no stragglers (t = 0) acts as a benchmark
for other schemes is shown in the plot as the ’blue’ curve. We
observe that the cost of clustering increases as the number of
stragglers in the network is increased from 3 to 9 as expected.
Further, we observe that the cost of clustering in the presence
of stragglers decreases as the redundancy increases from 0 to
0.9.

Fig. 5: Cost of clustering in presence of Byzantines.

B. Byzantine-resilient Clustering

In this section, we illustrate the performance of our
Byzantine-resilient distributed k-median algorithm and bench-
mark it with the non-redundant data assignment scheme. We
consider t = 3 randomly chosen Byzantines. We present the
results in Figures 4a, 4b, 4c, and 4d.

We plot the ground truth using the centroids provided in
the dataset in Fig. 4a with k-median clustering, for k = 15.
In Fig. 4b, we present the results by ignoring the local
computations from the Byzantines, i.e., Algorithm 4 is used
without any redundant data assignment. We randomly partition
the n = 5000 data points among m = 10 machines. The
honest machines send their respective k-median centers to the
FC. Then, the FC runs a k-median algorithm on the (m− t)
centers obtained from the honest machines. From Fig. 4b, the
set of poor quality k-centers obtained from this scheme is
noticeable.

In Fig. 4c, the result obtained by using Algorithm 4 is
shown. We choose the assignment matrix randomly with
p = Pr[Ai,j = 1] = 0.1. Hence, using this assignment matrix
ensures that each machine receives 500 data points on an
average which results in a non-redundant data assignment.
Lastly, in Fig. 4d, we show the effect of increasing the value
of p to 0.2. Therefore, the redundancy in the data assignment
increases which results in each machine receiving about 1000
data points. We observe that the results are very close to the
ground truth clustering presented in Fig. 4a.

In Fig. 5, the cost of clustering at the FC as a function of
the redundancy of the data assignment scheme for different
values of Byzantines in the network is shown. Similar to the
previous experiments, we set the total number of machines as
10. Moreover, we consider BIRCH [52] 2-dimensional dataset
with 100,000 points and k = 100. The scheme with no
Byzantines (t = 0) acts as a benchmark for other schemes
is shown in the plot as the ’blue’ curve. We observe that the
cost of clustering increases as the number of Byzantines in
the network is increased from 3 to 9 as expected. Further,
we observe that the cost of clustering in the presence of
Byzantines decreases as the redundancy increases from 0 to
0.9. Also, we observe that the cost of clustering in the presence
of Byzantines is higher than the cost of clustering in the
presence of stragglers.

14

IX. CONCLUSION

In this paper, we provided O(1)-approximate solutions for
the distributed k-median and k-means clustering problems
in the presence of stragglers. These algorithms were then
extended to the case where Byzantines were present in the
system. Note that the approach for k-means (Algorithm 2
and Algorithm 6) used in this work can be generalized to
obtain straggler-resilient and Byzantine-resilient algorithms for
a larger class of ℓ2 fitting problems such as (r, k)-subspace
clustering solutions. We also provided computationally effi-
cient constant factor approximate solutions for the distributed
clustering problems in the presence of Byzantines.

An alternate viable approach to tackle Byzantines is to use
some outlier robust clustering at the FC to filter out Byzan-
tines. At a high level, Algorithm 4 achieves that by filtering
out all the points that incur large cost on the partial data sets.
This ensures that the Byzantines cannot send arbitrary points.
Finally, another interesting direction to explore would be to
reduce communication costs between the machines and the
FC resulting in communication-efficient clustering algorithms
in the presence of stragglers and Byzantines.

APPENDIX

Outline of Appendix
We present all the missing proofs in the appendix. Appendix A
– Appendix C deal with straggler resilient clustering algo-
rithms

• In Appendix A, we present the proof of Lemma IV.1.
Here, we present the general algorithm where each ma-
chine computes and sends to the FC an α-approximate
k-medians solution instead of the exact solution.

• In Appendix B, we present the proof of Theorem IV.3
which contains all the required Lemmas and the analysis
for k-means clustering in presence of stragglers.

• Appendix C contains the proof of Lemma IV.4. In this
section, we present the proof for an important Lemma
required for bounding the approximation factor for the
(r, k)-subspace clustering.

Appendix D and Appendix E deal with Byzantine resilient
clustering algorithms

• In Appendix D, we present the proof of Lemma V.1.
In this section, we present the analysis for the Lemma
required to obtain the cost of clustering using the k-
median solution in the presence of Byzantines.

• In Appendix E, we present the proof of Theorem V.3.
In this section, we present the analysis for required
Lemmas and the cost of clustering in the presence of
Byzantines when using the computationally efficient k-
median algorithm.

In Appendix F, and Appendix G we present two constructions
(one randomized, and another explicit construction) of (t, δ)-
Byzantine (and straggler) resilient assignment matrices.

• In Appendix F, we present the proof of Theorem VI.1. In
this section, we present the analysis for random Bernoulli
assignment matrix for adversarial Byzantines.

• In Appendix G, we present the proof of Theorem VI.2. In
this section, we present the analysis for expander graph
based assignment matrix for adversarial Byzantines.

Finally, in Appendix H, and Appendix I we deal with the
constructions of assignment matrices for the random straggler
model.

• In Appendix H we present the proof of Theorem VII.1. In
this section, we present the analysis for random Bernoulli
assignment matrix for random Byzantines.

• In Appendix I, we present the proof of Theorem VII.2.
In this section, we present the analysis for FRC based
assignment matrix for random Byzantines.

STRAGGLER RESILIENT CLUSTERING

A. Straggler-Resilient Distributed k-median Clustering

In this section, we present the general algorithm mentioned
in Remark 2.

Algorithm 8 Straggler-resilient distributed k-median

1: Initialize: A collection of n data points P ⊂ Rd

2: Allocate P to m machines according to a (t, δ)-straggler
resilient matrix A.

3: Let Pi ⊂ P be the set of points assigned to machine Wi

4: Each machine Wi computes an α-approximate k-median
solution, Yi, on set Pi.

5: Define gi : Yi → R as gi(y) = |cluster(y, Pi)|, for every
y ∈ Yi

6: FC collects {(Yi, gi)}i∈R from the non-straggling ma-
chines, for some R ⊆ [m], |R| ≥ m− t

7: Let Y =
⋃

i∈R Yi. Using the recovery vector b, define
g : Y → R such that g(y) = bigi(y),∀y ∈ Yi and i ∈ R

8: Return Ĉ, an α-approximate k-median solution on (Y, g).

Theorem A.1. Let C∗ be the optimal set of k-median centers
for dataset P . Then, Algorithm 8 on dataset P returns a set of
centers Ĉ such that cost(P, Ĉ) ≤ α(1+δ)(2+α)cost(P,C∗).

Similar to the proof of Theorem IV.2, the proof of The-
orem A.1 is established through Lemma A.2. The proof of
Lemma IV.1 also follows from Lemma A.2 as a special case
when α = 1.

Lemma A.2. For k-median clustering, for any set of k-centers
C ⊂ Rd, we have

cost(P,C)−
∑
i∈R

bicost(Pi, Yi) ≤ cost(Y, g, C)

≤ (1 + α)(1 + δ)cost(P,C).

Proof of Lemma A.2. We prove each part of the inequality
separately. First, we prove the upper bound on cost(Y, g, C)
followed by the lower bound.
Upper Bound: We first show that for any set of k-centers C ⊂
Rd, and for any i ∈ [m], cost(Yi, gi, C) ≤ (1 + α)cost(Pi, C)
which ensures that the weighted k-centers (Yi, gi) are a good
representation of the partial dataset Pi. Consider the following

15

cost(Yi, gi, C) =
∑
y∈Yi

gi(y)d(y, C)

=
∑
y∈Yi

|cluster(y, Pi)|d(y, C)

(by definition of gi)

=
∑
y∈Yi

∑
x∈cluster(y,Pi)

d(y, C). (11)

For any x ∈ Rd, recall that C(x) denotes its closest center in
C. From the above equality, we have

cost(Yi, gi, C) =
∑
y∈Yi

∑
x∈cluster(y,Pi)

d(y, C(y))

(a)

≤
∑
y∈Yi

∑
x∈cluster(y,Pi)

d(y, C(x))

(b)

≤
∑
y∈Yi

∑
x∈cluster(y,Pi)

(d(x, y) + d(x, C(x)))

=
∑
y∈Yi

∑
x∈cluster(y,Pi)

d(x, y) +
∑
x∈Pi

d(x, C(x))

= cost(Pi, Yi) + cost(Pi, C)

(c)

≤ (1 + α)cost(Pi, C), (12)

where (a) follows from the definition of C(x) and (b) follows
from triangular inequality. (c) follows from the fact that the
k-centers Yi on the partial dataset Pi is an α-approximate
solution, and therefore, cost(Pi, Yi) ≤ α cost(Pi, C). Next,
we have

cost(Y, g, C) =
∑
i∈R

cost(Yi, bi · gi, C)

=
∑
i∈R

bicost(Yi, gi, C)

≤ (1 + α)
∑
i∈R

bicost(Pi, C)

≤ (1 + α)(1 + δ)cost(P,C), (13)

where the first inequality follows from (12) and the second
inequality follows from Lemma III.1.
Lower Bound: From Lemma III.1 for any set of k-centers C,
we have

cost(P,C) ≤
∑
i∈R

bicost(Pi, C)

=
∑
i∈R

bi
∑
x∈Pi

d(x, C(x)). (14)

From the definition of cluster centers, we know that for
any two points x, y ∈ Rd and for any set of k-centers C,
d(x, C(x)) ≤ d(x, C(y)). Applying this observation in (14),
we get

cost(P,C) ≤
∑
i∈R

bi
∑
x∈Pi

d(x, C(x))

≤
∑
i∈R

bi
∑
x∈Pi

d(x, C(Yi(x))), (15)

where Yi(x) is the cluster center in Yi closest to x ∈ Pi. Using
triangular inequality, we obtain

cost(P,C) ≤
∑
i∈R

bi
∑
x∈Pi

(d(x, Yi(x)) + d(Yi(x), C(Yi(x))))

=
∑
i∈R

bicost(Pi, Yi)

+
∑
i∈R

bi
∑
x∈Pi

d(Yi(x), C(Yi(x)))

=
∑
i∈R

bicost(Pi, Yi)

+
∑
i∈R

bi
∑
x∈Yi

|cluster(y, Pi)|d(y, C(y))

=
∑
i∈R

bicost(Pi, Yi) +
∑
i∈R

bicost(Yi, gi, C)

=
∑
i∈R

bicost(Pi, Yi) +
∑
i∈R

cost(Yi, bi · gi, C)

=
∑
i∈R

bicost(Pi, Yi) + cost(Y, g, C). (16)

Combining the upper and the lower bounds, we obtain the
final result.

We now prove Theorem A.1.

Proof of Theorem A.1. Utilizing the lower bound from
Lemma A.2 with C = Ĉ, we have

cost(P, Ĉ) ≤ cost(Y, g, Ĉ) +
∑
i∈R

bicost(Pi, Yi)

(a)

≤ α cost(Y, g, C∗) + α
∑
i∈R

bicost(Pi, C
∗)

(b)

≤ α(1 + α)(1 + δ)cost(P,C∗)

+ α(1 + δ)cost(P,C∗)

= α(1 + δ)(2 + α)cost(P,C∗), (17)

where (a) follows from the fact that Ĉ and Yi are the α-
approximate set of centers for the weighted dataset (Y, g) and
the partial dataset Pi, respectively. For (b), we utilize the upper
bound in Lemma A.2 and Lemma III.1 with C = C∗.

B. Straggler-Resilient Distributed k-means

In this section, we prove the guarantees of Algorithm 2.
First, we prove the following intermediate lemma that will
establish bounds on the quality of the accumulated summaries
from the machines.

Lemma A.3. For the k-means clustering, for any set of k-
centers C ⊂ Rd, we have

1

2
cost(P,C)−

∑
i∈R

bicost(Pi, Yi) ≤ cost(Y, g, C)

≤ (2 + 2α)(1 + δ)cost(P,C).

Proof of Lemma A.3. We split the proof into two parts. The
first part involves the upper bound and in the second part, we
prove the lower bound.

16

Upper Bound: We first show that for any set of k-centers C ⊂
Rd, for any i ∈ [m], cost(Yi, gi, C) ≤ (2 + 2α)cost(Pi, C)
which ensures that the weighted k-centers (Yi, gi) are a good
representation of the partial dataset Pi. Consider the following:

cost(Yi, gi, C) =
∑
y∈Yi

gi(y)d2(y, C)

=
∑
y∈Yi

|cluster(y, Pi)|d2(y, C)

=
∑
y∈Yi

∑
x∈cluster(y,Pi)

d2(y, C). (18)

For any x ∈ Rd, recall that C(x) denotes its closest center in
C. From the above equality, we have

cost(Yi, gi, C) =
∑
y∈Yi

∑
x∈cluster(y,Pi)

d2(y, C(y))

(a)

≤
∑
y∈Yi

∑
x∈cluster(y,Pi)

d2(y, C(x))

(b)

≤
∑
y∈Yi

∑
x∈cluster(y,Pi)

(2d2(x, y) + 2d2(x, C(x)))

=
∑
y∈Yi

∑
x∈cluster(y,Pi)

2d2(x, y) +
∑
x∈Pi

2d2(x, C(x))

= 2cost(Pi, Yi) + 2cost(Pi, C)

(c)

≤ (2 + 2α)cost(Pi, C), (19)

where (a) follows from the definition of C(x) and (b) follows
from scaled triangular inequality. (c) follows from the fact that
Yi is a set of α-approximate k centers on the partial dataset
Pi, cost(Pi, Yi) ≤ α cost(Pi, C). Next, we have

cost(Y,C, g) =
∑
i∈R

cost(Yi, C, bi · gi)

=
∑
i∈R

bicost(Yi, C, gi)

≤ (2 + 2α)
∑
i∈R

bicost(Pi, C)

≤ (2 + 2α)(1 + δ)cost(P,C), (20)

where the first inequality follows from (19) and the second
inequality follows from Lemma III.1.

Lower Bound: From Lemma III.1 for any set of k-centers
C, we have

cost(P,C) ≤
∑
i∈R

bicost(Pi, C)

=
∑
i∈R

bi
∑
x∈Pi

d2(x, C(x)). (21)

From the definition of cluster centers, we know that for
any two points x, y ∈ Rd and for any set of k-centers,
d2(x, C(x)) ≤ d2(x, C(y)). Applying this observation in (21),
we get

cost(P,C) ≤
∑
i∈R

bi
∑
x∈Pi

d2(x, C(x))

≤
∑
i∈R

bi
∑
x∈Pi

d2(x, C(Yi(x))), (22)

where Yi(x) is the cluster center in Yi closest to x ∈ Pi. Using
scaled triangular inequality, we obtain

cost(P,C) ≤
∑
i∈R

bi
∑
x∈Pi

(2d2(x, Yi(x))

+ 2d2(Yi(x), C(Yi(x))))

=
∑
i∈R

2bicost(Pi, Yi)

+
∑
i∈R

bi
∑
x∈Pi

2d2(Yi(x), C(Yi(x)))

=
∑
i∈R

2bicost(Pi, Yi)

+
∑
i∈R

bi
∑
x∈Yi

|cluster(y, Pi)|2d2(y, C(y))

=
∑
i∈R

2bicost(Pi, Yi) +
∑
i∈R

2bicost(Yi, C, gi)

=
∑
i∈R

2bicost(Pi, Yi) +
∑
i∈R

2cost(Yi, C, bi · gi)

=
∑
i∈R

2bicost(Pi, Yi) + 2cost(Y,C, g). (23)

Combining the upper and the lower bounds, we obtain the
final result.

Theorem IV.3. Let C∗ be the optimal set of k-means centers
for dataset P . Then, Algorithm 2 on dataset P returns a
set of centers Ĉ such that cost(P, Ĉ) ≤ 2α(3 + 2α)(1 +
δ)cost(P,C∗).

Proof of Theorem IV.3. Utilizing the lower bound from
Lemma A.3 with C = Ĉ, we have

cost(P, Ĉ) ≤ 2cost(Y, Ĉ, g) +
∑
i∈R

2bicost(Pi, Yi)

(a)

≤ 2αcost(Y,C∗, g) + α
∑
i∈R

2bicost(Pi, C
∗)

(b)

≤ 2α(2 + 2α)(1 + δ)cost(P,C∗)

+ 2α(1 + δ)cost(P,C∗)

= 2α(3 + 2α)(1 + δ)cost(P,C∗), (24)

where (a) follows from the fact that Ĉ and Yi are the α-
approximate set of centers for the weighted dataset (Y, g) and
the partial dataset Pi, respectively. For (b), we utilize the upper
bound in Lemma A.3 and Lemma III.1 with C = C∗.

C. Straggler-Resilient Distributed (r,k)-Subspace Clustering

In this section, we present the missing proof of Lemma IV.4.

Lemma IV.4. Let δ ∈ (0, 1). For any set of k-centers C ⊂ Rd,
we have

(1− δ)cost(P,C) ≤ cost(Y, g, C) ≤ (1 + 3δ)cost(P,C).

Proof of Lemma IV.4. For any i ∈ R, note that the weighted
point set (Yi, gi) is an δ-coreset of the partial dataset Pi.

17

Hence, from the Definition II.4, we have that for any set of
k-centers C ⊂ Rd,

(1− δ)cost(Pi, C) ≤ cost(Yi, gi, C) ≤ (1 + δ)cost(Pi, C).
(25)

For Y = ∪i∈RYi and any set of k-centers C, we have

cost(Y, g, C) =
∑
y∈Y

g(y)d2(y, C)

=
∑
i∈R

bi
∑
y∈Yi

gi(y)d2(y, C)

=
∑
i∈R

bicost(Yi, gi, C). (26)

Combining (26) and (25), we get

(1− δ)
∑
i∈R

bicost(Pi, C) ≤ cost(Y, g, C)

≤ (1 + δ)
∑
i∈R

bicost(Pi, C). (27)

Now using the above inequality and Lemma III.1, we have

cost(Y,C, g) ≥ (1− δ)
∑
i∈R

bicost(Pi, C)

≥ (1− δ)cost(P,C), (28)

and

cost(Y,C, g) ≤ (1 + δ)
∑
i∈R

bicost(Pi, C)

≤ (1 + δ)(1 + δ)cost(P,C)

≤ (1 + 3δ)cost(P,C) for any δ ≤ 1. (29)

Combining the upper and the lower bounds, we obtain the
final result.

BYZANTINE RESILIENT CLUSTERING

D. Byzantine Resilient Distributed k-Median

In this section, we present the proof of Lemma V.1. We
restate the lemma here for the benefit of the reader.

Lemma V.1. For any i ∈ [m], the weighted point set (Yi, gi)
satisfies

cost(Pi, C)− cost(Pi, Yi) ≤ cost(Yi, gi, C)

≤ cost(Pi, C) + cost(Pi, Yi). (7)

Proof of Lemma V.1. We prove both sides of the inequality
separately.
Upper Bound: Using the definitions of cost(Yi, gi, C), and
gi(y) = |cluster(y, Pi)|, we get

cost(Yi, gi, C) =
∑
y∈Yi

∑
x∈cluster(y,Pi)

d(y, C(y)) (30)

≤
∑
y∈Yi

∑
x∈cluster(y,Pi)

d(y, C(x)). (31)

Applying triangular inequality, we obtain

cost(Yi, gi, C) ≤
∑
y∈Yi

∑
x∈cluster(y,Pi)

(d(x, y) + d(x, C(x))).

(32)

Splitting the summation into two terms, simplifying further,
and utilizing the definition of cost(·, ·) yields the final result
as the following.

cost(Yi, gi, C) ≤
∑
y∈Yi

∑
x∈cluster(y,Pi)

d(x, y) +
∑
x∈Pi

d(x, C(x))

= cost(Pi, Yi) + cost(Pi, C). (33)

Lower Bound: For any machine i ∈ [m], we have
cost(Pi, C) =

∑
x∈Pi

d(x, C(x)). Let Yi(x) be the cluster cen-
ter in Yi that is closest to x ∈ Pi. Then, we get cost(Pi, C) ≤∑

x∈Pi
d(x, C(Yi(x))), applying triangular inequality, we have

cost(Pi, C) ≤
∑
x∈Pi

d(x, Yi(x)) +
∑
x∈Pi

d(Yi(x), C(Yi(x))).

simplifying further, and utilizing the definitions of cost(Pi, Yi)
and cost(Yi, gi, C), we obtain the final result.

cost(Pi, C) ≤ cost(Pi, Yi) +
∑
y∈Yi

|cluster(y, Pi)|d(y, C(y))

= cost(Pi, Yi) + cost(Yi, gi, C),

E. Improved Byzantine Resilient Distributed k-Median

Lemma V.4. Let γ ≥ 1
k . For any i ∈ [m], and y ∈ Yi,

Pr[|g̃i(y)− gi(y)| ≥ γ gi(y)] ≤
1

k

Proof of Lemma V.4. The weight g̃i(y) can be written as

g̃i(y) =
∑

p∈cluster(y,P̃i)

wi(p)

=
∑

p∈cluster(y,Pi)

wi(p)1(p ∈ P̃i). (34)

Applying expectation on both sides where the randomness is
due to the sampling while constructing the coreset [31], we
obtain E[g̃i(y)] =

∑
p∈cluster(y,Pi)

wi(p)P(p ∈ P̃i). From [31],
we know that wi(p)P(p ∈ P̃i) = 1. Therefore, we have

E[g̃i(y)] =
∑

p∈cluster(y,Pi)

1 = gi(y). (35)

From Chernoff’s inequality, we have P(|gi(y) − g̃i(y)| ≤
γgi(y)) ≥ 1 − e−2γ2gi(y)2|Pi|, for a given i ∈ [m − t] and
y ∈ Yi.

Taking union bound over all i ∈ [m − t] and y ∈ Yi, and
setting γ2 ≥ log k

(mini,y gi(y)2|Pi|) log (k(m−t)) , the above inequality
holds with probability at least 1− 1

k . We assume that a cluster
includes itself, thus ensuring that gi(y) ≥ 1. Note that an upper
bound for gi(y) and |Pi| is n. Therefore, γ2 ≥ log k

n3 log (k(m−t)) .
Thus, we choose γ = 1/k which satifies the inequality.

Lemma V.5. Let δ, γ ∈ (0, 1). For any i ∈ [m], the weighted
point set (Yi, g̃i) satisfies

(1− γ)cost(Pi, C)− 1− γ

1− δ
cost(P̃i, wi, Yi) ≤ cost(Yi, g̃i, C)

≤ (1 + δ)cost(Pi, C) + cost(P̃i, wi, Yi).

18

Proof of Lemma V.5. We prove the upper and the lower bound
separately.
Upper bound: Expanding the definition of cost(Yi, g̃i, C) and
g̃i(y) for any y ∈ Yi, we have

cost(Yi, g̃i, C) =
∑
y∈Yi

g̃i(y)d(y, C(y))

≤
∑
y∈Yi

∑
x∈cluster(y,P̃i)

wi(x)d(y, C(x))

(a)

≤
∑
y∈Yi

∑
x∈cluster(y,P̃i)

wi(x)d(y, x)

+
∑
y∈Yi

∑
x∈cluster(y,P̃i)

wi(x)d(x, C(x))

= cost(P̃i, wi, Yi) + cost(P̃i, wi, C)

(b)

≤ cost(P̃i, wi, Yi) + (1 + δ)cost(Pi, C).
(36)

The inequality (a) follows from triangular inequality, and (b)
follows from the fact that (P̃i, wi) is a δ-coreset of Pi as
mentioned in Observation V.1.
Lower bound: For any machine i ∈ [m] with any set of centers
C, we have cost(Pi, C) =

∑
x∈Pi

d(x, C(x)). Let Yi(x) be
the cluster center in Yi that is closest to x ∈ Pi. Then, we
get cost(Pi, C) ≤

∑
x∈Pi

d(x, C(Yi(x))), applying triangular
inequality, we have

cost(Pi, C) ≤
∑
x∈Pi

d(x, Yi(x)) +
∑
x∈Pi

d(Yi(x), C(Yi(x))).

For any y ∈ Yi, define gi(y) := |cluster(y, Pi)|. Simpli-
fying further, and utilizing the definitions of cost(Pi, Yi) and
cost(Yi, gi, C), we obtain

cost(Pi, C) ≤ cost(Pi, Yi) +
∑
y∈Yi

|cluster(y, Pi)|d(y, C(y))

= cost(Pi, Yi) + cost(Yi, gi, C). (37)

Now, using Observation V.2, we know that with probability at
least 1 − 1/k, cost(Yi, gi, C) ≤ 1

1−γ cost(Yi, g̃i, C). Plugging
this back in Equation 37, and rearranging the terms, we get
that

cost(Yi, g̃i, C) ≥ (1− γ)cost(Pi, C)− (1− γ)cost(Pi, Yi)

≥ (1− γ)cost(Pi, C)− (1− γ)

1− δ
cost(P̃i, wi, Yi),

where the last inequality follows from the fact that (P̃i, wi) is
a δ-coreset of Pi (Observation V.1).

Theorem V.3. Let δ ∈ (0, 1). Let C∗ be the optimal solu-
tion to the k-median problem on point set P . Then, Algo-
rithm 5 returns a set of k-centers Ĉ such that cost(P, Ĉ) ≤(

2
1−1/k + 1

1−δ

)
(1 + 3δ)cost(P,C∗), even in the presence of

t Byzantines with probability 1− 1
k .

Proof of Theorem V.3. We need to show that cost(P, Ĉ) ≤
αcost(P,C∗), for some α ≥ 1. Starting from the LHS, using
the lower bound from Lemma V.5, we get

cost(P, Ĉ) ≤
m−t∑
i=1

ρ cost(Pi, Ĉ)

≤ ρ

1− δ

m−t∑
i=1

cost(P̃i, wi, Yi)︸ ︷︷ ︸
(Term1)

+
ρ

1− γ

m−t∑
i=1

cost(Yi, g̃i, Ĉ)︸ ︷︷ ︸
(Term2)

. (38)

We now bound each of the terms in Equation 38 separately.

a) Term 1:
ρ

1− δ

m−t∑
i=1

cost(P̃i, wi, Yi)
(a)

≤ ρ

1− δ

∑
i∈R

cost(P̃i, wi, Yi)

(b)

≤ ρ(1 + δ)

1− δ

∑
i∈R

cost(Pi, Yi)

(c)

≤ ρ(1 + δ)

1− δ

∑
i∈R

cost(Pi, C
∗)

(d)

≤ (1 + δ)2

1− δ
cost(P,C∗). (39)

Since for every Byzantine in the first [m− t] machines, there
will exist an honest machine with higher cost, (a) follows.
(b) follows from the fact that (P̃i, wi) is a δ-coreset of Pi.
The optimality of the centers Yi on Pi computed at the honest
machines implies (c). Finally, (d) follows from the property
of the assignment matrix shown in Lemma III.2.

b) Term 2:
ρ

1− γ

m−t∑
i=1

cost(Yi, g̃i, Ĉ)
(a)
=

1

1− γ
cost(Y, g̃, Ĉ)

(b)

≤ 1

1− γ
cost(Y, g̃, C∗)

(c)

≤ ρ

1− γ

m−t∑
i=1

cost(Yi, g̃i, C
∗)

(40)

(a) and (c) follow from the definitions of Y and g̃, and the
optimality of the k-centers Ĉ on (Y, g) implies (b).

Now using the upper bound from Lemma V.5, continuing
from Equation 40, we get

ρ

1− γ

m−t∑
i=1

cost(Yi, g̃i, Ĉ) ≤ ρ

1− γ

m−t∑
i=1

cost(Yi, g̃i, C
∗)

≤ ρ(1 + δ)

1− γ

m−t∑
i=1

cost(Pi, C
∗)︸ ︷︷ ︸

Term 21

+
ρ

1− γ

m−t∑
i=1

cost(P̃i, wi, Yi)︸ ︷︷ ︸
Term 22

(41)

19

Term 21, by the property of the assignment matrix is equiva-
lent to

ρ(1 + δ)

1− γ

m−t∑
i=1

cost(Pi, C
∗) =

(1 + δ)2

1− γ
cost(P,C∗),

(from Lemma III.2)

Also, observe that Term 22 is just a scaled version of Term 1
simplified above in Equation 39. Therefore,

ρ

1− γ

m−t∑
i=1

cost(P̃i, wi, Yi) ≤
(1 + δ)2

1− γ
cost(P,C∗)

Plugging these two inequalities back in Equation 41, we get
that Term 2 is bounded by

ρ

1− γ

m−t∑
i=1

cost(Yi, g̃i, Ĉ) ≤ 2(1 + δ)2

1− γ
cost(P,C∗) (42)

Finally, combining Equation 39 and Equation 42 in Equa-
tion 38 we get

cost(P, Ĉ) ≤ (1 + δ)2
(

1

1− δ
+

2

1− γ

)
cost(P,C∗)

≤ (1 + 3δ)

(
1

1− δ
+

2

1− γ

)
cost(P,C∗)

(for any δ ∈ (0, 1]).

CONSTRUCTION OF DATA ASSIGNMENT MATRIX

F. Random Construction for Adversarial Byzantines

Theorem VI.1. For any δ > 0, the Bernoulli assignment
matrix A with p = O(1

logm), satisfies Property III.2 with
probability at least 1−O(1

m), and is resilient to t = O(m
log2 m

)
Byzantines.

Proof of Theorem VI.1. The proof follows from the observa-
tion that on deleting any set of t rows, the column weights in
AR are almost preserved with high probability.

Let B ⊂ [m] denote a fixed set of t Byzantines. Note that on
deleting a fixed set of t the rows of A indexed by B ⊂ [m], the
expected weight of a fixed column j is p(m − t). Therefore,
from standard Chernoff bounds it follows that

Pr[|wt(A′
j)− p(m− t)| ≥ γp(m− t)] ≤ e−

γ2

3 p(m−t),

where wt(A′
j) denotes the number of non-zero entries in the j-

th column of AR - the submatrix of A obtained from deleting
the rows in B.

By a union bound over all
(
m
t

)
subsets of rows and all

n (= m) columns of A, we get that with probability at least
1 − n · mt · e−

γ2

3 p(m−t), all columns of A will have weight
in the range [(1 − γ)p(m − t), (1 + γ)p(m − t)]. Therefore,
setting ρ = (1 − γ)p(m − t), we get that for any set B of t
rows, 1Tn ≤ ρ

∑
i∈[m]\B ai ≤ (1 + δ)1Tn , for δ = 2γ

1−γ .

Setting p = O
(

t logm(2+δ)2

(m−t)δ2

)
, A satisfies Property III.2

with probability at least 1 − 1/m. In particular, for p =
O(1/ logm), the result follows for any t = O(m/ log2 m),
with probability at least 1− 1/m.

G. Explicit Construction for Adversarial Byzantines
Theorem VI.2. For any δ > 0, the assignment matrix A
satisfies Property III.2 with t =

√
logm/ log logm, and

ℓ = O(logm).

Proof of Theorem VI.2. Let G = (L ∪ R,E) be the double
cover of a c-regular expander graph on m vertices with
expansion λ = max{|λ2|, |λm|}

We construct the m ×m assignment matrix A from G by
setting Au,v = 1 if there is an edge between (u, v) ∈ G for
any u ∈ R and, v ∈ L. Note that each column of A has weight
exactly c. Also, any set of t Byzantines will now correspond
to a set of t vertices in R. We show that removing any set of t
vertices from R does not reduce the individual degrees of any
vertex v ∈ L by a lot. This implies that the column weight in
AR is almost preserved.

Using Expander Mixing Lemma, we get that for any vertex
v ∈ L, and any set of t vertices B ⊂ R,

|E({v}, B)| ≤ c

m
t+ λ

√
t = c

(
t

m
+

λ

c

√
t

)
.

Therefore, for
(

t
m + λ

c

√
t
)
= γ, all vertices v ∈ L are

connected to at most cγ machines in any set of t machines in
R. So on deleting any set of t vertices in R all the vertices
v ∈ L will have degree deg(v) ∈ [(1− γ)c, c].

Therefore, setting ρ = 1
c(1−γ) , we satisfy

∑
i∈R ai ≤

1
1−γ 1T

n = (1 + δ)1Tn , for γ = δ
1+δ .

Using the expander constructions in [49], we get an
assignment scheme that is resilient to any set of t =
O(
√

logm/ log logm) Byzantines with an overhead of
O(logm) points per machine.

CONSTRUCTION FOR RANDOM STRAGGLER MODEL

H. Randomized Construction for Random Byzantines
Theorem VII.1. For any δ > 0, the randomized assignment
matrix in (9) with ℓ = 6(2+δ)2

δ2 · log (
√
2m)

1−pt
satisfies Property

III.1 with probability at least 1− 1
m under the random straggler

model.

Proof of Theorem VII.1. Recall that R ⊆ [m] denotes the set
of non-stragglers. Then, for any i ∈ [m], we have

P(i ∈ R) = 1− pt. (43)

Next, we argue that for any δ > 0, we can choose pa = ℓ
m

large enough to ensure Property III.1 with high probability.
First, we analyze the weight of each of the column in the
random matrix. For i ∈ [m] and j ∈ [n], define an event Ei,j

as follows

Ei,j =

{
1 if i ∈ R and Ai,j = 1

0 otherwise.
(44)

Note that for any fixed j ∈ [n], {Ei,j}i∈[m] is a collection of m
independent events. Further, it follows from (9) and (43) that
P(Ei,j = 1) = pa(1−pt). Note that E [

∑m
i=1 Ei,j] = mpa(1−

pt) = ℓ(1−pt). It then follows from standard Chernoff bound
that for any γ ∈ (0, 1), we have

P(

∣∣∣∣∣
m∑
i=1

Ei,j − ℓ(1− pt)

∣∣∣∣∣ ≥ γ(1− pt)) ≤ 2e−
γ2ℓ(1−pt)

3 . (45)

20

Specifically, if we choose γ = δ
2+δ and ℓ = 6 log (n

√
2)

γ2(1−pt)
, then

with probability at least 1− 1
n2 the following holds for a given

j ∈ [n]

1 ≤ 1

(1− γ)ℓ(1− pt)

m∑
i=1

Ei,j ≤ 1 + δ.

Now, taking a union bound over all j ∈ [n], we have with
probability at least 1− 1

n ,

1 ≤ 1

(1− γ)ℓ(1− pt)

m∑
i=1

Ei,j ≤ 1 + δ, ∀j ∈ [n]. (46)

Recall that to establish Property III.1, we need to show that
there exists a non-negative vector b ∈ R|R| such that

1T
n ≤ bTAR = (a1, . . . , an) ≤ (1 + δ)1T

n .

Setting b = 1
(1−γ)ℓ(1−pt)

· (1, . . . , 1) as a candidate, we have

bTAR =
1

(1− γ)ℓ(1− pt)
·

(
m∑
i=1

Ei,1, . . . ,

m∑
i=1

Ei,n

)
.

It follows from (46) that with probability at least 1− 1
n , each

of the coordinates of bTBR falls in the interval [1, 1+δ]. This
completes the proof.

I. Explicit Construction for Random Byzantines

Theorem VII.2. For any δ > 0, the FRC based assignment
matrix A with ℓ = s = O(logm), satisfies Property III.1 with
probability at least 1 − O(1

m) under the random straggler
model, and provides resilience against t = O(m) stragglers.

Proof of Theorem VII.2. Recall that R ⊆ [m] indicates the set
of honest machines. Then, for any i ∈ [m], we have

Pr{i ∈ R} = 1− pt. (47)

Next, we show that the proposed construction satisfies Prop-
erty III.1 with high probability.

Consider the block of Bi = 1s×s, of A for any i ∈ [m/s].
First we show that for any block and a random set R of non-
straggler machines, the weights of every column concentrates
around it expected values.

For any block i ∈ [m/s] and row in block j ∈ [s], we define
an event Fi,j as follows:

Fi,j =

{
1 if row j in block i ∈ R
0 otherwise.

(48)

From (47), we know that Pr{Fi,j = 1} = 1 − pt. Therefore,
for any fixed block i of s rows, we have E

[∑s
j=1 Fi,j

]
=

s(1− pt).
Utilizing Chernoff bound, for any γ ∈ (0, 1), we have

Pr

∣∣∣∣∣∣

s∑
j=1

Fi,j − s(1− pt)

∣∣∣∣∣∣ ≥ γs(1− pt)

 ≤ 2e−
γ2s(1−pt)

3 .

(49)
So, with high probability, the random set of Byzantines leave
about s(1 − pt)(1 ± γ) rows unaffected in each block. So

summing over the rows in block i of AR, we get that with
probability at least 1− 2e−

γ2

3 (s(1−pt)),

s(1− pt)(1− γ)1Ts ≤
∑
j∈[s]

Fi,jBi,j ≤ s(1− pt)(1 + γ)1Ts .

where, Bi,j denotes the j-th row in the i-th block Bi.
Setting γ = δ

2+δ , then with high probability the following
holds for a given i ∈ [m/s].

1T
s ≤ 1

(1− γ)s(1− pt)

∑
j∈[s]

Fi,jBi,j ≤ (1 + δ)1Ts . (50)

Taking union bound over all blocks i ∈ [m/s], we have with
the probability at least 1− 2m

s e−
γ2

3 (s(1−pt)),

1Ts ≤ 1

(1− γ)s(1− pt)

∑
j∈[s]

Fi,jBi,j ≤ (1+δ)1Ts , ∀i ∈ [m/s].

(51)
The result then follows from the fact that all the blocks are
in mutually exclusive rows of A. Setting s = O(logm) for
a constant pt, we see that the assignment scheme satisfies
Property III.2 with probability at least 1 − O(1/m) and ρ =

1
(1−γ)s(1−pt)

, where γ = δ
2+δ .

REFERENCES

[1] V. Gandikota, A. Mazumdar, and A. S. Rawat, “Reliable distributed
clustering with redundant data assignment,” in 2020 IEEE International
Symposium on Information Theory (ISIT), 2020, pp. 2556–2561.

[2] S. Bulusu, V. Gandikota, A. Mazumdar, A. S. Rawat, and P. K.
Varshney, “Byzantine resilient distributed clustering with redundant data
assignment,” in 2021 IEEE International Symposium on Information
Theory (ISIT), 2021, pp. 2143–2148.

[3] S. Dasgupta, “The hardness of k-means clustering,” ’ Dept. Comput. Sci.
Eng., Univ. California, San Diego, CA, USA, Tech. Rep. CS2008-0916,
2008.

[4] T. F. Gonzalez, “Clustering to minimize the maximum intercluster
distance,” Theoretical computer science, vol. 38, pp. 293–306, 1985.

[5] M.-F. F. Balcan, S. Ehrlich, and Y. Liang, “Distributed k-means and
k-median clustering on general topologies,” Advances in neural infor-
mation processing systems, vol. 26, 2013.

[6] G. Malkomes, M. J. Kusner, W. Chen, K. Q. Weinberger, and B. Mose-
ley, “Fast distributed k-center clustering with outliers on massive data,”
in Proceedings of the 28th International Conference on Neural Informa-
tion Processing Systems - Volume 1, ser. NIPS’15, 2015, p. 1063–1071.

[7] J. Chen, H. Sun, D. Woodruff, and Q. Zhang, “Communication-optimal
distributed clustering,” Advances in Neural Information Processing
Systems, vol. 29, pp. 3727–3735, 2016.

[8] P. Awasthi, M. Balcan, and C. White, “General and robust
communication-efficient algorithms for distributed clustering,” CoRR,
vol. abs/1703.00830, 2017.

[9] S. Guha, Y. Li, and Q. Zhang, “Distributed partial clustering,” in Pro-
ceedings of the 29th ACM Symposium on Parallelism in Algorithms and
Architectures, ser. SPAA ’17. Association for Computing Machinery,
2017, p. 143–152.

[10] A. Bhaskara and M. Wijewardena, “Distributed clustering via lsh based
data partitioning,” in International Conference on Machine Learning.
PMLR, 2018, pp. 570–579.

[11] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” Advances in Neural
Information Processing Systems, vol. 30, 2017.

[12] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proceedings of
the 34th International Conference on Machine Learning, ser. Proceed-
ings of Machine Learning Research, vol. 70. PMLR, 06–11 Aug 2017,
pp. 3368–3376.

[13] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, pp. 1514–1529, 2018.

21

[14] S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, “Slow and
stale gradients can win the race: Error-runtime trade-offs in distributed
sgd,” in International conference on artificial intelligence and statistics.
PMLR, 2018, pp. 803–812.

[15] B. Buyukates, E. Ozfatura, S. Ulukus, and D. Gündüz, “Gradient coding
with dynamic clustering for straggler mitigation,” in ICC 2021-IEEE
International Conference on Communications. IEEE, 2021, pp. 1–6.

[16] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” IEEE Transactions on Information Theory, vol. 66, no. 3, pp.
1920–1933, 2020.

[17] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, 1982.

[18] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning
in adversarial settings: Byzantine gradient descent,” Proceedings of the
ACM on Measurement and Analysis of Computing Systems, vol. 1, no. 2,
pp. 1–25, 2017.

[19] L. Su and J. Xu, “Securing distributed machine learning in high
dimensions,” arXiv preprint arXiv:1804.10140, 2018.

[20] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” in Advances in neural
information processing systems, 2011, pp. 693–701.

[21] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in Proceedings of the
35th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, vol. 80. PMLR, 10–15 Jul 2018, pp.
5650–5659.

[22] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Ma-
chine learning with adversaries: Byzantine tolerant gradient descent,”
in Advances in Neural Information Processing Systems 30, 2017, pp.
119–129.

[23] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding
from cyclic mds codes and expander graphs,” IEEE Transactions on
Information Theory, vol. 66, no. 12, pp. 7475–7489, 2020.

[24] M. Glasgow and M. Wootters, “Approximate gradient coding with
optimal decoding,” IEEE Journal on Selected Areas in Information
Theory, vol. 2, no. 3, pp. 855–866, 2021.

[25] S. Wang, J. Liu, and N. Shroff, “Fundamental limits of approximate
gradient coding,” Proceedings of the ACM on Measurement and Analysis
of Computing Systems, vol. 3, no. 3, pp. 1–22, 2019.

[26] H. Wang, Z. Charles, and D. Papailiopoulos, “Erasurehead: Distributed
gradient descent without delays using approximate gradient coding,”
arXiv preprint arXiv:1901.09671, 2019.

[27] D. Data, L. Song, and S. Diggavi, “Data encoding methods for
byzantine-resilient distributed optimization,” in 2019 IEEE International
Symposium on Information Theory (ISIT), 2019, pp. 2719–2723.

[28] D. Data and S. Diggavi, “On byzantine-resilient high-dimensional
stochastic gradient descent,” in 2020 IEEE International Symposium on
Information Theory (ISIT), 2020, pp. 2628–2633.

[29] D. Data and S. N. Diggavi, “Byzantine-resilient high-dimensional fed-
erated learning,” IEEE Transactions on Information Theory, vol. 69,
no. 10, pp. 6639–6670, 2023.

[30] A. Ghosh, R. K. Maity, S. Kadhe, A. Mazumdar, and K. Ramchandran,
“Communication-efficient and byzantine-robust distributed learning,” in
2020 Information Theory and Applications Workshop (ITA). IEEE,
2020, pp. 1–28.

[31] V. Braverman, D. Feldman, H. Lang, A. Statman, and S. Zhou, “Efficient
coreset constructions via sensitivity sampling,” in Asian Conference on
Machine Learning. PMLR, 2021, pp. 948–963.

[32] S. Guha, Y. Li, and Q. Zhang, “Distributed partial clustering,” ACM
Transactions on Parallel Computing (TOPC), vol. 6, no. 3, pp. 1–20,
2019.

[33] D. Feldman and L. J. Schulman, “Data reduction for weighted and
outlier-resistant clustering,” in Proceedings of the twenty-third annual
ACM-SIAM symposium on Discrete Algorithms. SIAM, 2012, pp. 1343–
1354.

[34] D. Feldman, M. Schmidt, and C. Sohler, “Turning big data into tiny
data: Constant-size coresets for k-means, pca and projective clustering,”
in Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, ser. SODA ’13. USA: Society for Industrial and
Applied Mathematics, 2013, p. 1434–1453.

[35] J. Byrka, K. Sornat, and J. Spoerhase, “Constant-factor approximation
for ordered k-median,” in Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, 2018, pp. 620–631.

[36] A. Kumar, Y. Sabharwal, and S. Sen, “A simple linear time (1+/spl
epsiv/)-approximation algorithm for k-means clustering in any dimen-
sions,” in 45th Annual IEEE Symposium on Foundations of Computer
Science. IEEE, 2004, pp. 454–462.

[37] D. Feldman and M. Langberg, “A unified framework for approximating
and clustering data,” in Proceedings of the forty-third annual ACM
symposium on Theory of computing, 2011, pp. 569–578.

[38] K. Varadarajan and X. Xiao, “A near-linear algorithm for projective
clustering integer points,” in Proceedings of the twenty-third annual
ACM-SIAM symposium on Discrete Algorithms. SIAM, 2012, pp. 1329–
1342.

[39] D. Feldman, M. Monemizadeh, C. Sohler, and D. P. Woodruff, “Coresets
and sketches for high dimensional subspace approximation problems,”
in Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, ser. SODA ’10. USA: Society for Industrial and
Applied Mathematics, 2010, p. 630–649.

[40] K. Varadarajan and X. Xiao, “On the sensitivity of shape fitting
problems,” in IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2012), ser.
Leibniz International Proceedings in Informatics (LIPIcs), vol. 18,
Dagstuhl, Germany, 2012, pp. 486–497.

[41] D. Feldman, M. Schmidt, and C. Sohler, “Turning big data into tiny
data: Constant-size coresets for k-means, pca, and projective clustering,”
SIAM Journal on Computing, vol. 49, no. 3, pp. 601–657, 2020.

[42] C. Sohler and D. P. Woodruff, “Strong coresets for k-median and sub-
space approximation: Goodbye dimension,” in 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS). IEEE, 2018,
pp. 802–813.

[43] Z. Feng, P. Kacham, and D. Woodruff, “Dimensionality reduction for
the sum-of-distances metric,” in International conference on machine
learning. PMLR, 2021, pp. 3220–3229.

[44] V. Cohen-Addad, D. Saulpic, and C. Schwiegelshohn, “A new coreset
framework for clustering,” in Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, 2021, pp. 169–182.

[45] V. Cohen-Addad, K. G. Larsen, D. Saulpic, and C. Schwiegelshohn,
“Towards optimal lower bounds for k-median and k-means coresets,” in
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory
of Computing, ser. STOC 2022. New York, NY, USA: Association for
Computing Machinery, 2022, p. 1038–1051.

[46] V. Braverman, V. Cohen-Addad, H.-C. S. Jiang, R. Krauthgamer,
C. Schwiegelshohn, M. B. Toftrup, and X. Wu, “The power of uniform
sampling for coresets,” in 2022 IEEE 63rd Annual Symposium on
Foundations of Computer Science (FOCS). IEEE, 2022, pp. 462–473.

[47] V. Braverman, D. Feldman, H. Lang, and D. Rus, “Streaming core-
set constructions for m-estimators,” in Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2019.

[48] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their
applications,” Bulletin of the American Mathematical Society, vol. 43,
no. 4, pp. 439–561, 2006.

[49] Y. Bilu and N. Linial, “Lifts, discrepancy and nearly optimal spectral
gap,” Combinatorica, vol. 26, no. 5, pp. 495–519, 2006.

[50] Z. Charles, D. Papailiopoulos, and J. Ellenberg, “Approximate gradient
coding via sparse random graphs,” arXiv preprint arXiv:1711.06771,
2017.

[51] P. Fränti and O. Virmajoki, “Iterative shrinking method for clustering
problems,” Pattern Recognition, vol. 39, no. 5, pp. 761–775, 2006.

[52] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: A new data clustering
algorithm and its applications,” Data Mining and Knowledge Discovery,
vol. 1, no. 2, pp. 141–182, 1997.

BIOGRAPHY SECTION

Saikiran Bulusu (Member, IEEE) received the B.Tech. degree from the
MGIT, Hyderabad, in 2009, the M.Tech. in communication engineering
from the IIT Madras, in 2012, and Ph.D. degree in electrical and computer
engineering from Syracuse University University, in 2023. Since September
2023, he has been a Postdoctoral Scholar at the AI-EDGE Institute, The
Ohio State University. His research interests include robust machine learning,
distributed optimization, and compressed sensing.

22

Venkata Gandikota (Senior Member, IEEE) received the B.E. degree in CS
from BITS Pilani, Goa, in 2010, and the M.S./Ph.D. degrees in CS from
Purdue University in 2017. Previously, he has held postdoctoral appointments
at Johns Hopkins University and University of Massachusetts at Amherst. He
is currently an Assistant Professor of Electrical Engineering and Computer
Science at Syracuse University. His research interests include coding theory,
point lattices, and their applications to foundational machine learning tasks.
Arya Mazumdar (Senior Member, IEEE) received the Ph.D. degree from
the University of Maryland, College Park, in 2011. He is a Professor at
the University of California, San Diego. From 2015 to 2021, he was an
Assistant Professor followed by an Associate Professor with the College of
Information and Computer Sciences, University of Massachusetts Amherst.
Prior to that, he was a Faculty Member with the University of Minnesota,
Twin Cities, from 2013 to 2015; and a Post-Doctoral Researcher with the
Massachusetts Institute of Technology, from 2011 to 2012. His research
interests include coding theory, information theory, statistical learning, and
distributed optimization. He was a recipient of multiple awards, including the
Distinguished Dissertation Award for Ph.D. Thesis in 2011, NSF CAREER
Award in 2015, EURASIP JASP Best Paper Award in 2020, and IEEE
ISIT Jack K. Wolf Student Paper Award in 2010. He was a Distinguished
Lecturer of the Information Theory Society for 2023-24, and currently serves
as an Associate Editor for IEEE TRANSACTIONS ON INFORMATION
THEORY and an Area Editor for Now Publishers Foundation and Trends
in Communication and Information Theory series.
Ankit Singh Rawat received the B.Tech. degree in electrical engineering from
the IIT Kanpur, Kanpur, India, in 2010, and the M.S. and Ph.D. degrees in
electrical and computer engineering from The University of Texas at Austin,
in 2012 and 2015, respectively. Since October 2018, he has been a Research
Scientist with Google Research, New York City. Previously, he has held
postdoctoral appointments at the Research Laboratory of Electronics, Mas-
sachusetts Institute of Technology, the College of Information and Computer
Sciences, University of Massachusetts Amherst, and the Computer Science
Department, Carnegie Mellon University. His research interests include coding
theory, information theory, and statistical machine learning. He is a recipient
of the Microelectronics and Computer Development Fellowship from The
University of Texas at Austin.
Pramod K. Varshney (S’72–M’77–SM’82–F’97) was born in Allahabad,
India, in 1952. He received the B.S. degree (Hons.) in electrical engineering
and computer science and the M.S. and Ph.D. degrees in electrical engineering
from the University of Illinois at Urbana–Champaign in 1972, 1974, and 1976,
respectively. Since 1976, he has been with Syracuse University, Syracuse,
NY, USA, where he is currently a Distinguished Professor of Electrical
Engineering and Computer Science and the Director of the Center for
Advanced Systems and Engineering. His current research interests are in
distributed sensor networks and data fusion, detection and estimation theory,
and wireless communications. He was a James Scholar, a Bronze Tablet
Senior, and a fellow with the University of Illinois at Urbana–Champaign. He
is a member of the Tau Beta Pi. In 2000, he received the Third Millennium
Medal from the IEEE and Chancellors Citation for exceptional academic
achievement at Syracuse University. He is a recipient of the 1981 ASEE
Dow Outstanding Young Faculty Award. He is also a recipient of the IEEE
2012 Judith A. Resnik Award, an Honorary Doctor of Engineering degree
from Drexel University in 2014, and the ECE Distinguished Alumni Award
from UIUC in 2015. He was the President of the International Society of
Information Fusion in 2001. He is on the Editorial Board of the Journal on
Advances in Information Fusion and the IEEE Signal Processing Magazine.

	Introduction
	Our Results
	Comparison with our Previous Works
	Outline and Notation

	System Model
	Preliminaries

	Data Assignment
	Straggler-resilient Data Assignment
	Byzantine-resilient Data Assignment

	Straggler Resilient Clustering
	Straggler-Resilient Distributed k-median Clustering
	Straggler-Resilient Distributed k-means Clustering
	Straggler-Resilient Distributed (r,k)-Subspace Clustering

	Byzantine Resilient Clustering
	Byzantine Resilient Distributed k-Median Clustering
	Improved Byzantine Resilient Distributed k-Median Clustering
	Byzantine Resilient k-means Clustering

	Construction of Data Assignment Matrix
	Randomized Construction
	Explicit Construction

	Random Straggler Model
	Randomized Construction for Random Stragglers
	Explicit Construction for Random Stragglers

	Simulation Results
	Straggler-resilient Clustering
	Byzantine-resilient Clustering

	Conclusion
	Appendix
	Straggler-Resilient Distributed k-median Clustering
	Straggler-Resilient Distributed k-means
	Straggler-Resilient Distributed (r,k)-Subspace Clustering
	Byzantine Resilient Distributed k-Median
	Improved Byzantine Resilient Distributed k-Median
	Random Construction for Adversarial Byzantines
	Explicit Construction for Adversarial Byzantines
	Randomized Construction for Random Byzantines
	Explicit Construction for Random Byzantines

	References
	Biography Section
	Biographies
	Saikiran Bulusu
	Venkata Gandikota
	Arya Mazumdar
	Ankit Singh Rawat
	Pramod K. Varshney

