1184

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 2, FEBRUARY 2025

Support Recovery in Mixture Models With Sparse
Parameters
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Abstract— Mixture models are widely used to fit complex and
multimodal datasets. In this paper we study mixtures with high
dimensional sparse parameter vectors and consider the problem
of support recovery of those vectors. While parameter learning
in mixture models is well-studied, the sparsity constraint remains
relatively unexplored. Sparsity of parameter vectors is a natural
assumption in high dimensional settings, and support recovery
is a major step towards parameter estimation. We provide
efficient algorithms for support recovery that have a logarithmic
sample complexity dependence on the dimensionality of the latent
space, and also poly-logarithmic dependence on sparsity. Our
algorithms, applicable to mixtures of many different canoni-
cal distributions including high dimensional Uniform, Poisson,
Laplace, Gaussians, etc., are based on the method of moments.
In most of these settings, our results are the first guarantees on
the problem while in the rest, our results provide improvements
on or are competitive with existing works.

Index Terms— Mixture models, sparse approximation, method
of moments.

I. INTRODUCTION

IXTURE models are standard tools for probabilistic

modeling of heterogeneous data, and have been studied
theoretically for more than a century. Mixtures are used in
practice for modeling data across different fields, such as,
astronomy, genetics, medicine, psychiatry, economics, and
marketing among many others [2]. Mixtures with finite number
of components are especially successful in modeling datasets
having a group structure, or presence of a subpopulation within
the overall population. Often, mixtures can handle situations
where a single parametric family cannot provide a satisfactory
model for local variations in the observed data [3].

The literature on algorithmically learning mixture dis-
tributions is quite vast and comes in different flavors.
Computational and statistical aspects of learning mixtures
perhaps starts with [4], and since then have been the sub-
ject of intense investigation in both computer science and
statistics [5], [6], [71, [8], [9], [10], [11], [12], [13], [14],
[15], [16]. A large portion of this literature is devoted to
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density estimation or PAC-learning, where the goal is simply
to find a distribution that is close in some distance (e.g.,
TV distance) to the data-generating mechanism. The results
on density estimation can be further subdivided into proper
and improper learning approaches depending on whether the
algorithm outputs a distribution from the given mixture family
or not. These two guarantees turn out to be quite different.

A significant part of the literature on the other hand is
devoted to parameter estimation, where the goal is to identify
the mixing weights and the parameters of each component
from samples. Apart from Gaussian mixtures, where all
types of results exist, prior work for other mixture families
largely focuses on density estimation, and very little is
known for parameter estimation outside of Gaussian mixture
models. In this paper, our focus is to facilitate parameter
estimation in Gaussian mixtures and beyond. We consider the
setting where the parameters of the mixture are themselves
high dimensional, but sparse (i.e., have few nonzero entries).
Sparsity is a natural regularizer in high dimensional parameter
estimation problems and have been considered in the context
of mixtures in [17], [18], and [19], where it is assumed
only few dimensions of the component means are relevant
for de-mixing. In this paper we consider a slightly different
model where we assume the means themselves are sparse.
The former problem can be reduced to our setting if one of
the component means is known. We, in particular, focus on
only recovering the support of the vectors.

An interesting application of learning mixtures with sparse
parameters is in high-dimensional clustering problems where
cluster centers actually belong to a low-dimensional space.
This is similar in spirit with sparse-PCA [20]; our objective is
to identify a few important input features, so one can easily
interpret its meaning. Our techniques can also be seen as a
novel method for feature selection that can significantly speed
up a learning algorithm.

Another practical application comes up naturally in rec-
ommendation systems where multiple users rate or evaluate
items. Since users can often be heterogenous with a wide
variety of distinct tastes, it is important that recommendations
are personalized. However, the set of users can be partitioned
(see for example [21]) into significantly large clusters where
users in the same cluster have relatively similar preferences.
Note that the identity of each unknown cluster can be modeled
by an unknown parameter vector. It makes sense for the
unknown vectors to be sparse, because most users have an
affinity towards a few particular features of items among
many possible. Sparse mixtures were motivated with such an
application in the query based setting in [22] and [23].
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Note that, support recovery is an effective way to reduce the
dimension of the ambient space, and therefore can be consid-
ered as a key step towards parameter estimation. We provide
two flavors of results for support recovery namely, 1) Exact
support recovery: where we recover the supports of all
unknown sparse parameters corresponding to all components
of the mixture, 2) Maximal support recovery: where we
recover the maximal supports from the poset of all supports
of the parameter vectors (i.e., supports that are not subsets of
any other).

A. Discussion on Our Results and Other Related Works

Note that the sample complexity guarantees that we
present in this paper for different notions of support recov-
ery in high dimensional mixtures of distributions scale
poly-logarithmically with the ambient dimension 7.

Our technique of learning the supports of the latent param-
eter vectors in mixture of simple distributions is based on
the method of moments [16], [24]. This method works in
general, as long as moments of the distribution of each
coordinate can be described as a polynomial in the component
parameters. It was shown in [7] (see Table II in [7]) that most
common distributions, including Gaussian, Uniform, Poisson,
and Laplace distributions, satisfy this assumption. Our results
include sample complexity guarantees for both exact support
recovery (see Theorem 1) and maximal support recovery (see
Theorem 2), and are not only applicable to many canonical
distributions but also makes progress towards quantifying the
sufficient number of moments in the general problem defined
in Sec. II-B.

An alternate approach to the support recovery problem is to
first recover the union of supports of the unknown parameters
and then apply known parameter estimation guarantees to
identify the support of each of the unknown vectors after
reducing the dimension of the problem. Note that this approach
crucially requires parameter estimation results for the corre-
sponding family of mixtures which may be unavailable. To the
best of our knowledge, most constructive sample complexity
guarantees for parameter estimation in mixture models without
separability assumptions correspond to mixtures of Gaus-
sians [6], [7], [9], [16], [25], [26], [27], [28]. Moreover, most
known results correspond to mixtures of Gaussians with two
components. The only known results for parameter estimation
in mixtures of Gaussians with more than 2 components is [9]
but as we describe later, using the alternate approach with the
guarantees in [9] results in a polynomial dependence on the
sparsity. On the contrary, our sample complexity guarantees
scales poly-logarithmically with the sparsity or dimension (for
constant £), see Corollary 3, which is a significant improve-
ment over the alternate approach (though not unexpected,
as support recovery is supposed be an easier task).

For other than Gaussian distributions, [7], [29] studied
parameter estimation under the same moment-based assump-
tion that we use. However, [7] use non-constructive arguments
from algebraic geometry because of which, their results did not
include bounds on the sufficient number of moments for learn-
ing the parameters in a mixture model. Reference [29] resolve
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this question to a certain extent for these aforementioned
families of mixture models as they quantify the sufficient num-
ber of moments for parameter estimation under the restrictive
assumption that the latent parameters lie on an integer lattice.
Therefore, our results for these distributions form the first
guarantees for support recovery.

1) Main Technical Contribution: Our work is most related
to [23], where the focus is also support recovery, but one essen-
tially queries a mixed linear model to get labels for designed
features. Our unsupervised setting is completely different from
this query-based setting and we crucially develop on a general
technique introduced in [23] (see Lemma 1) for exact support
recovery. The central idea that we borrow is that, support
recovery is possible if we can estimate some subset statistics.

But computing estimates of these subset statistics to invoke
the guarantees given in Lemma 1 is a difficult problem.
Our approach to compute the sufficient statistics involves a
two-step approach with polynomial identities: 1) first, using
the method of moments, we compute estimates of the power
sum polynomial of certain degree involving the unknown
variables from all subsets of the coordinates up to a certain
size; 2) secondly, we use an elegant connection via Newton’s
identities to compute estimates on the elementary symmetric
polynomial in the unknown variables which in turn allows us
to compute the sufficient statistics.

Exact Support Recovery: Our moment-based approach
results in an algorithm (Theorem 1) with sample complexity
of O(polylogn) for exact support recovery - assuming that
other parameters such as the number of components ¢, range
of parameter entries, the first log ¢ moments of the univariate
base distribution of the mixture are constants and do not scale
with the ambient dimension n or sparsity k. The dependence
of our sample complexity guarantee on both the sparsity and
ambient dimension is poly-logarithmic. Our results hold for
multivariate mixture analogues of many canonical distributions
such as Gaussian, Uniform, Poisson, and Laplace distributions
among others. In contrast, for mixtures of Gaussians, the trivial
alternate approach of first estimating parameters followed
by support recovery results in a similar sample complexity
O(poly(k)logn) guarantee for exact support recovery that
scales polynomially with the sparsity k. For other mixture
models, to the best of our knowledge, parameter estimation is
an unsolved problem making the alternate approach infeasible.

Maximal Support Recovery: Maximal support recovery is
an alternate problem related to support recovery and is an
easier objective than exact support recovery. Under certain
conditions, maximal support recovery is equivalent to exact
support recovery (Remark 1). Therefore, as expected, we can
provide improved sample complexity guarantees for maximal
support recovery for several canonical distributions- these are
again poly logarithmic in sparsity and ambient dimension but
have significantly better polynomial factors.

a) Organization: The rest of the paper is organized as
follows: in Section II, we provide the necessary definition and
notations, and also formally define the problem. In Section III,
we provide the necessary preliminary lemmas for support
recovery (exact and maximal). In Section IV, we provide
our main results on exact support recovery and discuss our

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on January 25,2025 at 02:37:18 UTC from IEEE Xplore. Restrictions apply.



1186

core approaches, for example, see Corollary 3. In Section V,
we have provided additional results on maximal support recov-
ery. In Appendix A-B, we provide detailed proofs of all our
results. In Appendix B, we provide the missing proofs of
lemmas in Section III and in Appendix C, we provide the
proof of Lemma 1 proved in [23]. In Appendix D, we provide
a few technical lemmas that are used in the main proofs.

II. DEFINITION AND PROBLEM STATEMENT

A. Notations

We write [n] to denote the set {1,2,...,n}. We will use
1,,0, to denote an all one vector and all zero vector of
dimension n respectively. We will use Q([n]) to denote the
power set of [n] i.e. Q([n]) = {C | C C [n]}. The default base
for logarithms is 2, unless otherwise specified.

For any vector v € R", we use v; to denote the ith
coordinate of v and for any ordered set S C [n], we will
use the notation v|s € RIS to denote the vector v restricted
to the indices in S. Furthermore, we will use supp(v) =
{i € [n] : v; # 0} to denote the support of v and ||v||, =
|supp(v)| to denote the size of the support. ||v||_ denotes the
largest magnitude across entries of vector v. Let us refer to
x(v) € {0,1}™ as a binary vector such that for all i € [n],
we have x(v); = 1 if v; # 0 and x(v); = 0 otherwise. Let
sign : R — {—1,+1} be a function that returns the sign of a
real number i.e. for any input = € R,

sign(z) = {1_1

Consider a multi-set of n-dimensional vectors U =
{u® u® . u®). We will write Sy(i) £ {u € U :
u; # 0} to denote the multi-set of vectors in U that has a
non-zero entry at the it" index. Furthermore, for an ordered
set C C [n] and vector a € {0,1}/°l, we will also write
occy(C,a) £ 3 1x(u)c = a] to denote the number
of vectors in &/ whose supports equal a when restricted to the
indices in C. For a matrix M € R™*" we will use M; to
denote the 7*" column of M.

Again, for a multi-set of n-dimensional vectors V =
(v v@ v € R, Ay € {0,1}7%¢ denote the
support matrix of V where each column vector A; € {0,1}"
represents the support of the vector v(?) € V. For ease of
notation, we will omit the subscript VV when the set of vectors
is clear from the context.

We write NV'(p,0?) to denote a Gaussian distribution with
mean u and variance o2. We will denote the cumulative
distribution function of a random variable Z by ¢ : R — [0, 1]
ie. ¢(a) = [° _p(z)dz where p(-) is the density function
of Z. Also, we will denote erf : R — R to be the error
function defined by erf(z) = % J; exp(—t?)dt. Since the

error function erf is bijective, we define erf_1(~) to be the
inverse of the erf(-) function. Finally, for a fixed set B we
will write X ~ynis B to denote a random variable X that is
uniformly sampled from the elements in B.

ifx>0
if x <0.
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B. Formal Problem Statements

Consider a class of distributions P = {P(0)}ypco parame-
terized by some 6 € © C R. We assume that all distributions
in P satisfy the following property: EINP(Q)xé can be written
as a polynomial in 6 of degree exactly /. We emphasize
that the class of distributions P is known and therefore
the aforementioned polynomials (coefficients) of all degrees
are Ew,\,p(g)l’e are pre-computed and known. From Table II
in [7], we know that many well-known distributions satisfy
this property. For example,

1) P(0) can be a Gaussian distribution with mean 6 and
fixed known variance o?: for any positive integer ¢,
we have Exf = pEz*~1 4 (¢ — 1)0?Ex’~2.

2) P(6) can be a uniform distribution with range [0, b] for
a fixed and known b.

3) P(H) can be a Poisson distribution with mean 6.

4) From Table II in [7], Laplace, Gamma, Exponential, Chi-
squared distributions with appropriate parameterization
also satisfy the condition.

Let V be a multi-set of ¢ unknown k-sparse vectors
vl v@ v e R™ such that Hv(i)HO < kforalli € [{].
In our model, we observe samples from a n-dimensional
distribution P,, that is a uniform mixture of ¢ distributions each
of which is parameterized by one of these sparse unknown
vectors. A sample x € R",x ~ P, is generated as follows:

t ~Unif [f] and
X; |t~ P(vgt)) independently Vi € [n].

Consider x(M), x(®) .

we observe.

Our goal is to recover the support of unknown vectors
viD v®@ v ¢ Y with minimum number of samples
m. More formally, we look at two distinct notions of support
recovery:

Definition 1 (Exact Support Recovery): We will say that an
algorithm achieves Exact Support Recovery if it can recover
the supports of all the unknown vectors in V exactly.

Note that, {supp(v) : v € V} is a poset according to
containment or set-inclusion (C). A maximal element of this
poset is one that is not subset of any other element. When the
supports are all different, each of them is maximal.

Let Maximal()) be the unique set of all maximal elements
of the poset {supp(v) : v € V}.

Definition 2 (Maximal Support Recovery): We will say that
an algorithm achieves Maximal Support Recovery if it can
recover Maximal(V), i.e., all the maximal elements of the
poset {supp(v) : v € V}.

Note that in Definition 2, the objective is to recover supports
of the largest set of vectors in V, where no support is included
completely in another support; this is easier than exact support
recovery (Definition 1).

Remark 1: If every unknown vector v € V had a unique
non-zero index ¢ € [n] i.e. v; # 0 and v, = 0 for all
v/ € V\ {v}, then maximal support recovery is equivalent to
exact support recovery. This condition, also known as the sep-
arability condition, has been commonly used in the literature
for example in unique non-negative matrix factorization [30],

. ,x(m) € R™, m i.i.d. copies of x, that
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[31], [32] and approximate parameter recovery in Mixtures of
Linear Classifiers in the query-based setting [22].

III. USEFUL RESULTS

In the first sub-section, we quote some useful results
from [23] that will be useful in proving our results for exact
support recovery. In the second sub-section, we will derive
some properties of set systems and show sufficient statistics
for maximal support recovery.

A. Results of [23]

To derive our support recovery results, we will crucially
use the result of Lemma 1 below which has been proved
in [23]. Recall the definition of occy(C,a) in Sec. II-A.
Lemma 1 states that for a multi-set of binary vectors U,
if occyy(C, a) is known for all sets C C [n] up to a cardinality
of log £+ 1, then it is possible to recover the unknown vectors
in U up-to permutation. We restate the result according to our
terminology.

Algorithm 1 Support Recovery

Require: |occy(C, a)| for every C C [n], |C|=t, t € {p,p+ 1},
p = |log£], and every a € {0,1}? U {0,1}+*.

1: Set count = 1,7 = 1.

2: while count < / do

3. if there exists a vector a € {0,1}” U {0,1}*"! and a
positive integer w such that |occy (C, a)| = w, and |occy (C'U
{7}, (a,1))] € {0,w} for all j € [n]\ C then

Construct binary vector u* = {0}" and set ujc = a.

5: For every j € [n] \ C, set ufj = 1, if |occy(C U
{7} (a, )] = w.

6: Set Multiplicity® = w.

7: For all t € {0,1}? U {0,1}*™!,S C [n] such that |S| €

{p,p + 1}, update
loccy (S, t)| «— |occy (S, t)| — Joccy (C,a)| x l[ufs = t]

8: count = count + w.
9: i=1+1.

10: end if

11: end while

12: Return Multiplicity’ copies of u’ for all j < i.

Lemma 1 (Corollary 1 in [23]): Let V be a multi-set of
¢ unknown vectors in R™. Then, if occy(C,a) is provided
as input for all sets C C [n],|C| < log¢ + 1 and for all a €
{0,1}/€l, then there exists an algorithm (see Algorithm 1) that
can recover the support of the unknown vectors in V.

At a high level, the proof of Lemma 1 has two steps.
First it can be shown (see Appendix C) that if the multi-set
of ¢ unknown vectors )V is p-identifiable (every unknown
vector restricted to a certain set of p indices is unique), then
computing |occ(C, a)| for every subset of p and p+ 1 indices
is sufficient to recover the supports. Note that Algorithm 1
describes the above methodology namely recovering the sup-
ports of all unknown vectors from knowledge of |occ(+, -)|. For
a more detailed description of Algorithm 1 that first appeared
in [23], we refer the reader to Section C-A. Secondly, it can
be shown that any n x ¢, (with n > {) binary matrix with all
distinct columns is p-identifiable for some p < log /.
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Algorithm 2 Exact Support Recovery Using Access to Esti-
mates of |M;ecS(¢)] (or Alternatively |U;ccS(i)]) That Are
Correct With High Probability

Require: Access to an oracle O that takes as input any set C C [n]
and returns estimate of |N;ccS(¢)] (or alternatively |U;ceS(4)])
that are correct with high probability.

1: For each i € [n], compute an estimate of |S(z)| by providing 4
as input to oracle O.

2: Compute 7 = {i € [n] | estimate(|S(2)|) > 0}.

3: Compute estimates of |N;ecS(3)| (or alternatively |UsecS(7)|)
for all subsets C C 7,|C| < logf + 1 (by providing set C as
input to oracle O).

4: Compute occ(C, a) for all subsets C C 7,|C| < logl+ 1,a €
{0, 1}'6‘ using principle of inclusion and exclusion with the
computed estimates of |N;ecS(2)| (or alternatively |U;ecS(2)])
as input.

5: Use Algorithm 1 to recover the support of all unknown vectors
in V.

For the sake of completeness, we provided the detailed proof
of Lemma 1 in Appendix C.

Remark 2: Lemma | provides an unconditional guarantee
for recovering the supports of a multi-set of unknown vectors
in V. In other words, in the worst case, we only need to
know occy(C, a) for all sets of size |C| < log ¢+ 1. However,
in [23][Theorems 1,2 and 4] have improved sample complexity
guarantees for recovering the support of ) under different
additional structural assumptions. As noted in [23], these
additional assumptions are mild - in most cases, if occy (C, a)
is known for all sets C C [n] and all a € {0,1}/¢ up to a
cardinality of 3, then it is possible to recover the supports of
all the unknown vectors in V. These algorithms are based on
exact low rank integer tensor decomposition which is possible
efficiently for tensors of order 3. Note that in this work,
our goal has been to impose minimal assumptions on V' and
therefore we have used Lemma 1 to provide our (slightly
worse) sample complexity guarantees on support recovery.

Next, we describe another result, Lemma 2, proved in [23]
that is also going to be useful for us. The main takeaway
from Lemma 2 is that computing |U;ccS(¢)| (which represents
the number of unknown vectors in V having non-zero values
in at least one entry corresponding to C) for all sets smaller
than a fixed size (say t) is sufficient to compute occ(C, a) for
all subsets C C [n],|C] < t and all vectors a € {O,l}'c‘.
In addition, we provide a result in Lemma 2 where we show
that it is also possible to compute occ(C, a) if the quantities
|NiecS(@)| (which represents the number of unknown vectors
in )V having non-zero values in all entries corresponding to C)
are provided for all subsets C C [n] satisfying |C| < t.

Lemma 2: [23]: Let V be a multi-set of £ unknown vectors
in R™. If |{J;cc Sv(4)] is provided as input for all sets C C
[n],|C| <t or alternatively |(1),c. Sy (i) is provided as input
for all sets C C [n],|C| < ¢, then we can compute occy (C, a)
for all sets C C [n],|C| < t,a € {0,1}I°l.

Next, we prove a corollary of Lemma 2 where we assume
the existence of a randomized oracle. The oracle takes as input
a set C and returns |U;cc Sy (4)] (or alternatively | (),c. Sy (i)|)
with probability 1 — ~ using Tlogy~! samples for some
known value of T. Assuming the existence of such an oracle,
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we characterize the sample complexity of exact support recov-
ery. In other words, the following corollary implies that
designing the oracle is sufficient for exact support recovery.
In Lemma 6, we characterize the value of T in the context
of exact support recovery when observing samples from an
unknown mixtures of distributions.

Corollary 1: Let V be a multi-set of ¢ unknown k-sparse
vectors in R™. Suppose, for each C C [n],|C]| < logl + 1,
we can compute |U;ccSy(i)| (or alternatively |, Sy(i)])
with probability 1 — ~ using Tlogy~! samples where T
is independent of . Then, there exists an algorithm (see
Algorithm 2) that can achieve Exact Support Recovery with
probability at least 1 —~ using O(T log(y~! (n+ (¢k)08¢+1)))
samples.

Note that the main workhorse of Algorithm 2 is the principle
of inclusion and exclusion (see Step 4). We refer the reader to
Appendix B for a detailed proof of guarantees of Algorithm 2
that is included in this work for sake of completeness.

B. Properties of Set Systems

In this section, we describe the first contributions of this
work. In the following preliminary results, we study the set
Maximal(V) and its useful characteristic properties. Further,
in the next few lemmas, we also show sufficient conditions
for maximal support recovery. We start with the following
definition:

Definition 3 (t-Good): A binary matrix A € {0, 1}"*¢ with
all distinct columns is called ¢-good if for every column A,
there exists a set () C [n] of t-indices such that (Ai)jgo) =
14, and (Aj) gy # 1 for all j # i. A set U C Q([n]) is
t-good if its n x |U| incidence matrix is ¢-good.

Notice that if any set is ¢-good then it must be r-good for
all positive integers n > r > t. In Lemma 3, we show that
Maximal(V) is (¢ — 1)-good and in Lemma 5, we provide
sufficient conditions for maximal support recovery of the set
of unknown vectors V.

Lemma 3: For any set of £ unknown vectors 1V, Maximal(V)
must be (¢ — 1)-good.

Proof: Note that, any set of Maximal(V) C Q([n]) is
not contained in any other. For any two A, A’ € Maximal(V),
there exists some ¢ € A such that ¢ ¢ A’. Therefore, for a
fixed A € Maximal(V), for each A’ € Maximal(V) \ {4},
we can have at most £ — 1 elements, that are all in A, but not
all in any other set. We can also exploit the fact that if any
set is t-good, then the set must be r-good for all n > r > t.
To conclude, Maximal()) must be at most (£ — 1)-good and
is therefore (¢ — 1)-good. O

Lemma 4: Let V be a multi-set of ¢ unknown vectors in
R™. If it is known whether |N;ccSy(7)] > 0 or not for all
sets C C [n],|C| < s+ 1, then there exists an algorithm
(see Algorithm 3) that achieves maximal support recovery of
the multi-set of unknown vectors V provided Maximal(V) is
known to be s-good for s < ¢ — 1 and |Maximal(V)| > 2.

Proof of Lemma 4: As stated in the Lemma, suppose it is
known if |M;ecS(2)| > 0 or not for all sets C C [n] satisfying
IC|] < s+ 1. Assume that Maximal(V) is s-good Consider
a set A € Maximal(V). Since Maximal(V) is s-good, there
must exist an ordered set C C [n],|C| = s such that C C A
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Algorithm 3 Maximal Support Recovery Using the Quantities
1|NieeS(4)] > 0]
Require: For every C C [n], |C| < ¢, the quantities 1[|N;ecS(2)] >
0] are provided as input
1: Set 7 = ¢ to be the set of binary support vectors.
2: Set Z = {i € [n] | 1[|S(¢)| > 0]} to be the union of supports
of unknown vectors.
3: If 1[|Niezu(;3S(i)| > 0] = 1, then return 7 to be the vector
v € {0,1}" where supp(v) = Z
4: while There exists a set C C [n],|C|] < ¢ — 1 such that 1)
Vie # 1jg for all v/ € T 2) 1[|NiecS(i)| > 0] = 1 and
3)1[|Niccuq3S(i)| > 0] = 1 for some j € Z\ C. do
!

50 Setd' =C.

6: for j € [n]\C do

7: if 1[|Niccur;3S(i)| > 0] = 1 then
8: SetU' — U U{j}

9: end if

10:  end for

11:  Set7 «— T U{v} where v € {0,1}" and supp(v) =U".
12: end while
13: Return 7.

but C ¢ A’ for all A’ € Maximal(V) \ {A}. Therefore,
we must have |N;ecS(7)] > 0. But, on the other hand,
notice that if |Maximal(V)| > 2, there must exist an index
J € UseMaximai(v)A such that |mi€CU{j}S(i)’ = 0 since A
does not contain the support of all other vectors. Algorithm 3
precisely checks for this condition in Step 3 and therefore this
completes the proof. O

Lemma 5: Let V be a multi-set of ¢ unknown vectors in
R™. If it is known whether |N;ccSy(7)] > 0 or not for all
sets C C [n],|C| = 4, then there exists an algorithm (see
Algorithm 3) that achieves maximal support recovery of the
multi-set of unknown vectors V.

Note that Lemma 5 just needs to handle the additional case
where |Maximal(V)| = 1.

Next, as in exact support recovery, we prove a corollary
of Lemma 4 where we assume the existence of a random-
ized oracle. The oracle takes as input a set C and returns
|NiccSy(i)] > 0 with probability 1 — ~ using Tlogvy~!
samples for some known value of T. Assuming the existence
of such an oracle, we characterize the sample complexity
of maximal support recovery. In other words, the following
corollary implies that designing such an oracle is sufficient
for maximal support recovery. In Lemma 7, we characterize
the value of T in the context of exact support recovery when
observing samples from an unknown mixtures of distributions.

Corollary 2: Let V be a multi-set of ¢ unknown k-sparse
vectors in R™. Suppose with probability 1 — ~y, for each C C
[n],|C] < ¢, we can compute if |N;ccSy(i)| > 0 correctly
with Tlog~y~! samples where T is independent of ~. Then,
there exists an algorithm (see Algorithm 4) that can achieve
maximal support recovery with probability at least 1 —~ using
O(Tlog(y~(n + (¢k)%))) samples.

The above corollary just takes into account the failure prob-
ability in computing estimates of all the statistical quantities
sufficient for maximal support recovery.

Remark 3: Corollary 2 describes the sample complexity for
maximal support recovery using Lemma 5 which provides the
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Algorithm 4 Maximal Support Recovery Using Access to
Estimates of 1[|N;c¢S(4)| > 0] That Are Correct With High
Probability

Require: For C C [n], access to estimates of 1[|N;ecS(2)| > 0] that

are correct with high probability.

1: For each i € [n], compute an estimate of 1[|N;ccS(2)| > 0].

2: Compute 7 = {i € [n] | estimate(1[|S(¢)| > 0])) = True}.

3: Compute estimates of 1[|NjecS(i)| > 0] for all subsets C C
7,Ic| <&

4: Use Algorithm 3 to recover the support of all unknown vectors
in V.

worst-case guarantees as Maximal()) is (£ — 1)-good for all
sets V. We can also provide improved guarantees for maximal
support recovery provided Maximal(}) is known to be s-good
by using Lemma 4. However, for the sake of simplicity of
exposition, we have only provided results for maximal support
recovery in mixture models using Corollary 2.

All the missing proofs of this section (other than that of
Lemma 1 and Lemma 4) can be found in Appendix B.

IV. EXACT SUPPORT RECOVERY

In this section, we will present our main results and high
level techniques for exact support recovery. The detailed
proofs of all results in this section can be found in
Section A-B. We will start by introducing some additional
notations specifically for this setting. Recall that EmNP(e)xt
can be written as a polynomial in 6 of degree t. We will write

4(0) 2 Epp(pyz’ = Z Bri

1€[t+1]

to denote this aforementioned polynomial where we use
{Bt,i}icp+1) to denote its coefficients. For all sets A C [n],
we will write Q;(.A) to denote all subsets of A of size at
most i ie. Q;(A) = {C | C C A,|C| < i}. Let us define
the function 7 : Q([n]) x [n] — [n] to denote a function that
takes as input a set C C [n], an index r € C and returns
as output the position of r among all elements in C sorted
in ascending order. In other words, for a fixed set C and all
j € [ICl], m(C,-) maps the j*" smallest index in C to j; for
example, if C = {3,5,9}, then 7(C,3) = 1,7(C,5) = 2 and
m(C,9) =3

We will write Z™ to denote the set of non-negative integers
and (Z*)" to denote the set of all n-dimensional vectors
having entries which are non-negative integers. For two vectors
u, t € (Z1)", we will write u < t if u; < t; for all ¢ € [n];
similarly, we will write u < t if u; < t; for all ¢ € [n]. For
any fixed subset C C [n] and vectors u,t € (Z+)|C|, we will
write (t y to denote the quantity (¢ v £ HiEC ﬂt”dc’i)?uw(c’i)_kl.
For any u,z € (Z1)I°l satisfying u < z, we will define a
path M to be a sequence of vectors z; > zg > -+ > Zj,
such that z1,2s2,...,%, € (ZT)", z; = z and z,, = u. Let
M(z,u) be the set of all paths starting from z and ending at
u. We will also write a path M € M(z, u) uniquely as a set
of m — 1 ordered tuples {(z1,22), (22,23),- .-, (Zm-1,%m)}
where each tuple consists of adjacent vectors in the path
sequence. We will also write 7 (M) = {z1,22,...,Zm} to
denote the set of elements in the path.

1189

We start with the following assumption which states that
the magnitude of every non-zero co-ordinate of all unknown
vectors is bounded from above and below:

Algorithm 5 Estimate(m, B) Estimating EX for X ~ P

Require: Lid samples zV, z® ... (™ ~ P
1: Sett =m/B
2: fort=1,2,...,B do _
3:  Set Batch ¢ to be the samples @ for j o€ {it+ 1,it +
2,...,(t+ 1)t}
4 Set S{ = Zje Batch % %
5: end for

[=))

: Return median({Si}£.,)

Algorithm 6 Recover | (. Sy(i)|

Require: Samples xV), x(™ ~ P,. Set € Cn]

1: For every z < 261‘c|, compute estimate U* of ETI, ccX
using Algorithm 5 on the set of samples {(x EJ)) ™(€.1) };"A: .
2{1j¢|, compute an estimate V* of
> el HZGC( (])) =€) recursively using equation (0% —

Zu<z Cz u V - Cz,z ‘ f}z

7r(C i)

2: For every z <

3: For every t € [, compute an estimate Ac; of
doerci Hzec( $))2  recursively using Newton’s identity
e e
tAci =30 (=Pt Ac,i_pV?Plicl,

4: Return maxcig t. 1[Ac ¢ >0].

Assumption 1: We will assume that the magnitude of all
non-zero entries of all unknown vectors in the set ) are
bounded from above by R and from below by § that is
Hv(i)HOO < R for all i € [¢] and minyey min;.v, 2o [vi| > 0.

Now, we show our main lemma in this setting where we
characterize the sufficient number of samples to compute
|Nicc Sv(i)| for each set C C [n] with high probability in
terms of the coefficients of the polynomials {g:(#)}:. Note
that, doing so can allow us to directly invoke Corollary 1 and
obtain high probability sample complexity guarantees for exact
support recovery.

Lemma 6: Suppose Assumption 1 is true. Fix any set C C
[n]. Let

5 62Z|C\
= @1
2(3 max(ﬁRMC\,QfR”'C')) 14
—1
Tl ¢ )
(r,s)EM 5r,s
X max + Z Z s )
<z<2e1|c Cow = MerTle,u) HreT(M) Cror
2z7r i
gy = maxy<are B Liee %, ™"
) P2 ’

where gy is a constant that is independent of k and n but
depends on /. There exists an algorithm (see Algorithm 6)
that can compute |, Sy(i)| exactly for the set C with

probability at least 1 — v using O(log(v_l(%)w')g&\;)
samples generated according to P,,.

In order to prove Lemma 6, we first show that (see
Lemma 8) for each fixed ordered set C C [n] and each vector
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t € (Z1)I°l, we must have

]EHX;F"(C’” = %ZCt,u ) ( Z ]._.[ ;7 )i 7>) M

ieC u<t jee] ieC

Note that each summand in equation 1 is a product of the
powers of the co-ordinates of the same unknown vector.
In Lemma 9, we show that for each set C C [n] and any vector
t € (Z1)ICl, we can compute > jerg Hiee(v (J)) (.9 via a
recursive procedure provided for all u € (Z*+)=I¢l satisfying
u < t, the quantity E]], .. x;"“” is pre-computed. This
implies that we can compute ZJE[Z] [Lice(v (j))217 for all
p € [¢] from the quantities EJ[, ., x @D for all u < 2p1ic).

It is easy to recognize ) .y, (Hiec
polynomial of degree p in the variables {]];.. vi}vev. Now,
let us define the quantity Ac; for a fixed ordered set C and
parameter ¢ € [¢] as follows:

ACt— Z H (J)

Cle i€C
‘C| tjEC

P
v; ] as the power sum

Notice that Ac; > 0 if and only if there exists a subset C' C
[0],|C’| = t such that v!”) # 0 for all i € C,j € C'. Hence,
the maximum value of ¢ such that A¢; > 0 is the number of
unknown vectors in V having non-zero value in all the indices
in C. In other words, we have that

(15w

ieC

=maxt- 1[Ac, > 0].
te[l]

Notice that Ac is the elementary symmetric polynomial of
degree t in the variables {[ ;.. vZ}vey. We can use Newton’s
identities to state that for all ¢ € [¢],

tAc,t = Zt:(—l)pHACvt—P( Z (HV ) )

p=1 vey ieC

using which, we can recursively compute Ac; for all ¢ €
[(] (Aco = 1) and hence |, S(i)| if we were given

Y vey (Hz‘ec vi) as input for all p € [¢] (see Lemma 10).
Lemma 6 follows from making these set of computations
robust.

Thus, from Lemma 6, we are now equipped with the
knowledge of T that we need to set in Corollary 1. We next
show Theorem 1 which follows from applying Lemma 6 and
Corollary 1.

Theorem 1: Let V be a set of ¢ unknown vectors in R"
satisfying Assumption 1. Recall that for a given set A, Q;(.A)
corresponds to all subsets of A of size at most i. For any
positive integer m, let F,,, = Q1([n]) U O (Uyveysupp(v))
and
625m

[I>

Py,

D
2 (3@ max(R26m, 2¢ Rt+m )) 0

-1
(11 ¢
(r,s)eEM 51,8

<m<+2 2 ) »

u<z MeM(z,u) HTGT(M) gr,r
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QZW(C.i)
E H'LEC 7

A
fey =  max
z<20110g 041 ‘I)IZOg 041
CEFlog 41

Here fyy is a quantity that is independent of sparsity k and
ambient dimension n. Then, there exists an algorithm (see
Algorithm 6 and 2) that achieves Exact Support Recovery with

probability at least 1 — v using O(log(ffl(%)log”l(n +

(0k)los tH1Y) fz}y) samples generated according to P,,.

Remark 4: f;y is a quantity that is a function of J, R
(range of magnitude of non-zero entries in parameter vectors
belonging to V) the first 2¢ moments of the random variable
x ~ P(0) where 0 € {Vi}ic[n),vev. If the aforementioned
quantities are constants, then f; ) is also a constant. In other
words, we emphasize that f,  is independent of k, n (sparsity
and ambient dimension).

Remark 5: We can relax Assumption 1 in Theorem 1 with-
out much further work. For our proofs to work out verbatim,
it is sufficient to just have the following condition be true:
given the latent variable ¢ denoting the mixture component,
coordinates of the random vector x ~ P,, must be (log ¢+ 1)-
wise independent (any log £+ 1 co-ordinates are independent).
However, for the sake of simplicity, we have provided the
setting where all co-ordinates of x | ¢ are independent.

Example: Consider the setting when we obtain m i.i.d
samples x(), x() .. x("™) c R”™ from a high dimensional
Gaussian mixture D = N (u®, 0%1) + N (u®, 020)
with two components where ) pu(?) € R™ satisfying
16 o, ||M(2)Ho < k are unknown and o > 0 is known. Our
goal is to recover the support of g, pu(2) while minimizing
the number of samples m. For x ~ D, for all i € [n], we have
that Ex2 = o2+ ((u$")2+ (u{?)2)/2; for all i, j € [n],i # j.
we have

Ex? x =0 (EX?-I—EX?)— 4

()2 ()2 + ()2 ()2
+( 2 )
Hence, in the first step, for all ¢ € [n], with prob-
ability 1 — v we compute an estimate u; of Ex?
(using Lemma 14) satisfying |u; — Ex?| < /(640> )
using O(6~ 80 max; (o, (uV)4, (u{?)*)) samples. With
this, we can infer the union of support correctly to be S =
{i € [n] | u; —0? > §2/4}. This is because for any index i in
the union of support, we must have Ex? > o2 + §2/2 while
for any index ¢ not in the union, we have ]Ex? = 2. Next,
in the second step, for all i, € S5 # j, we compute an
estimate uj; of Ex}x3 satlsfymg |uj; —Ex?x3| < 6% /16 using

O(678 max; (o, [.LE ,/,LJ ,,u,Z ’ng) 8log(ny~1)) samples
with probability at least 1 — ~y (see Lemma 14). In that case,
if ¢, 7 belongs to the support of the same vector, then we will
have |uf; — o®(u; + uj) + o] > 136%/32 while otherwise,
we must have |uj — o2 (u; + uj) + o] < 36%/32. Hence,
T={(i,j) € S,i#j | |uj; —0o? (u; +uj)+ot| > 1364/32}.
If there does not exist 7,5 € S, # j such that (i,j) € 7T,
then we return supp(p")) = supp(u?) = S implying that
both supports are same. On the other hand, if there exists

i,j € S,i # j such that (i,5) € T then i belongs to the
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support of one vector while j belongs to the support of the
other vector (both supports are not same). Let the support of
one vector will be {s € S, s # i | (i,5) € 7} and the support
of the other vector is {s € S,s # j | (J,s) € T}. Therefore,
the sufficient sample complexity for recovering the support
is m = 00 ¥ max; (0, ", uS", ul?, u$?)3log(ny1)).
Note that in this example, the algorithm is slightly different
from the one presented in Algorithm 6; in, fact the algorithm
follows that of maximal support recovery (see Section V)
which is equivalent to exact support recovery for £ = 2 (see
Remark 1).

Now, we provide a corollary of Theorem 1 specifically for
mean-estimation in a mixture of distributions with constant
number of components i.e. £ = O(1). In particular, consider
the setting where

t ~ynie [¢) and x; | t ~ P(vit)) independently Vi € [n]
@)

%

Bxnp, [xi [t =j] =V

i.e. the mean of the it co-ordinate of the random vector x
distributed according to P, is VEJ ),

Corollary 3: Consider the mean estimation problem
described above. Let V be a set of £ = O(1) unknown vectors
in R™ satisfying Assumption 1 and f,) be as defined in
Theorem 1. Then, there exists an algorithm (see Algorithm 6
and 2) that with probability at least 1 — v, achieves Exact
Support Recovery using O(poly log(ny~!)poly(§R~1) f@yv)
samples generated according to P,.

We can compare the sample complexity presented in Corol-
lary 3 with the alternate approach for support recovery namely
the two stage process of recovering the union of support
followed by parameter estimation restricted to the union of
support. As discussed in Section I, most known results (other
than [9]) for parameter estimation in Gaussian mixtures with-
out separability assumptions hold for two mixtures and are
therefore not applicable for ¢ > 2. For general value of /,
the only known sample complexity guarantees for parameter
estimation in mixture of Gaussians is provided in [9].

Note that computing the union of support is not difficult.
In particular, in Lemma 6, the guarantees include the sample
complexity of testing whether a particular index belongs to
the union of support; this can be used to compute the union
of support itself after taking a union bound over all indices
leading to a multiplicative logn factor.

However, for one dimensional Gaussian mixture models
(1D GMM), the parameter estimation guarantees in [9] (See
Corollary 5) are polynomial in the inverse of the failure
probability. Since parameter estimation in 1D GMM is used as
a framework for solving the high dimensional problem, it can
be extracted that the sample complexity in n dimensions must
be polynomial in n with degree at least 1 to achieve a per
coordinate error (error in £, norm). If restricted to the union
of support of the unknown vectors in V), then using the guar-
antees in [9] directly will lead to a polynomial dependence on
lk. In essence, the sample complexity of the alternate approach
has a logarithmic dependence on the latent space dimension
and a polynomial dependence on sparsity k£ (for constant
£). Note that in the analogous high dimensional mixtures of
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Gaussians, our sample complexity guarantee has a similar
poly-logarithmic dependence on the ambient dimension n and
the sparsity & (for a constant ¢).

For other distributions, to the best of our knowledge, the
only known parameter estimation results that exist in literature
are [7], [29]. In both of these works, the authors use the same
assumption that EINP(Q)JZZ can be written as a polynomial
in 0 of degree exactly ¢. While the guarantees in [7] are non-
constructive, the results in [29] need the restrictive assumption
that the means must be multiple of some ¢ > 0 and moreover,
they have an exponential dependence on the noise variance
and e~!. Our results do not have these limitations and are
therefore widely applicable.

V. MAXIMAL SUPPORT RECOVERY

In this section, we will present our main results for maximal
support recovery. The detailed proofs of all results in this
section can be found in Section A-B.

Algorithm 7 Estimate if | (1), Sy (i)| > 0

Require: Samples x(V, x® ... x(™) ~ Pn. Set C C [n].
1: For every z < 21¢|, compute estimate U” of ElLcc xf"“’”
using Algorithm 5 on the set of samples {(x])*~(¢.0}7,.
2: For every z < 2lj¢, compute an estimate V* of
el Hiec(vgj))z"cvi using the
equation:

recursively following

Eﬁz — ZCz,u . ‘7u - Cz,z . ‘72.

u<z

3 If Vel > 62‘c|/2, return True and otherwise return False.

Now, we provide results on maximal support recovery
in the MD setting. Note that from Lemma 5, for Maxi-
mal support recovery, we only need to estimate correctly if
Nice Sv(@)| > 0 for ordered sets C C [n]. Notice that
Nice S(i)| > 0if and only if >, .\, [T;cc v > 0. From our
previous arguments,u Z\{EV [Tice v?7 can be computed if the
quantities E[], .. x, "“" for all u < 21,¢| are pre-computed.
The following lemma stems from making the aforementioned
computation robust to the randomness in the dataset and
thus provide a sample complexity guarantee for estimating
INicc Sv(@)| > 0 for ordered sets C C [n] with high
probability. This in turn can allow use to invoke Corollary 2
to obtain sample complexity guarantees for maximal support
recovery:

Lemma 7: Suppose Assumption 1 is true. Fix any set C C
[n]. Let

521€l

14
e (o X

max
u<z MeM(z,u)

2z (c,i)
N maXz<21 ¢, E Hiec X

»2

where hyy is a constant independent of k and n but depends
on /. There exists an algorithm (see Algorithm 7) that can
compute if |\, S(i)| > 0 correctly for the set C with
probability at least 1 — « using O(hylogy~!) samples
generated according to P,,.

oL e s)em CrvS)_l

ez Ser

heyy
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The subsequent theorem follows from Lemma 7 and
Corollary 2. Note that, compared to exact support recovery
(Theorem 2) the sample complexity for maximal support
recovery has significantly improved dependency on ¢ and
furthermore, it is also independent of R.

Thus, from Lemma 7, we are now equipped with the
knowledge of T that we need to set in Corollary 2. Hence
we show our main result regarding maximal support recovery
by invoking Corollary 2 and setting the value of T that we
obtain from Lemma 7.

Theorem 2: Let V be a set of unknown vectors in R"
satisfying Assumption 1. Recall that for a given set A, Q;(.A)
corresponds to all subsets of A of size at most i. For any
positive integer m, let F,,, = Q1([n]) U QO (Uyveysupp(v))
and

O S AR VpY

u<z MeM(z,u)

2Z,(c,i)
EHieC X
, 2<21, (I)?

e syem Grs ) -1
HrET(M) CI'J‘

where hj,, is a constant independent of sparsity k and
ambient dimension n but depends on ¢. Accordingly, there
exists an algorithm (see Algorithm 7 and 4) that achieves
maximal support recovery with probability at least 1 —~y using
O(hg,v log(y~Y(n + (Kk)é))) samples generated from P,,.

Remark 6 (Computational Complexity): All our algorithms
are efficient, namely their computational complexities are
polynomial in the dimension n and sparsity k.

VI. CONCLUSION

In this paper, we considered the problem of learning the
support of some sparse high-dimensional vectors when we
see samples from a mixture model parameterized by those
sparse vectors. The class of distribution we can handle requires
coordinate-wise independence. It will be good to relax this
assumption in future. On the other hand, the distribution of
each coordinate must be such that the expectation operator
maps to a polynomial. While this class is pretty large, it would
be good to come up with methods that are applicable to
different general classes of distributions that do not satisfy this
assumption. It is most likely that one needs to look beyond
method of moments for such classes.

APPENDIX A
PROOFS FOR EXACT AND MAXIMAL SUPPORT RECOVERY

A. Notations and Definitions

Recall that EJNP(Q)xt can be written as a polynomial in 6
of degree t. We write

@(0) £ E,opga’ = Z By

i€ [t+1]

to denote this aforementioned polynomial where we use
{Bt,i}icpe+1) to denote its coefficients. For all sets A C [n],
we will write Q;(A) to denote all subsets of A of size at
most ¢ i.e. Q;(A) = {C | C C A,|C| < i}. Let us define
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the function 7 : Q([n]) x [n] — [n] to denote a function that
takes as input a set C C [n], an index r € C and returns
as output the position of r among all elements in C sorted
in ascending order. In other words, for a fixed set C and all
j € [|C|], =(C,-) maps the j*" smallest index in C to j; for
example, if C = {3,5,9}, then 7(C,3) = 1,n(C,5) = 2 and
w(C,9) =

We will write Z™ to denote the set of non-negative integers
and (ZT)" to denote the set of all n-dimensional vectors
having entries which are non-negative integers. For two vectors
u,t € (Z1)", we will write u < t if u; < t; for all i € [n];
similarly, we will write u < t if u; < t; for all i € [n]. For
any fixed subset C C [n] and vectors u,t € (Z1)Il, we will
write (¢ v, to denote the quantity (¢ £ Hiec ﬂtﬂ_(cwi)’uﬂ_(cwi)J’,l.
For any u,z € (Z1)I°l satisfying u < z, we will define a
path M to be a sequence of vectors z; > zo > -+ > zZ,,
such that z1,22,...,%, € (ZT)", z; = z and 2, = u. Let
M(z,u) be the set of all paths starting from z and ending at
u. We will also write a path M € M(z, u) uniquely as a set
of m — 1 ordered tuples {(z1,22), (22,23), .-, (Zm—1,2m)}
where each tuple consists of adjacent vectors in the path
sequence. We will also write 7 (M) = {z1,22,...,2,} to
denote the set of elements in the path.

B. Detailed Proofs

Consider a set of unknown k-sparse vectors V =
{vD ... v} that parameterize the generative process P,,.
Recall that a sample x ~ P,, is generated as follows:

t ~unif [f] and x; | t ~ P(vgt)) independently Vi € [n].

In other words, x is generated according to a uniform mixture
of distributions each having a sparse unknown parameter
vector. It is important to note that conditioned on ¢ € [/],
the entries of x are independently generated.

Lemma 8: For each fixed set C C [n] and each vector t €
(Z+)I€l, we must have

EHX:w(c,i) _ %Z(:t,u . ( Z H (J) Ur(c, 1))

ieC u<t 0] ieC

Proof: We will have

tic.;
(C,i)
E | I X,

iGC
7 Z (HQtw(c o ( )
JG ] iec
Z Z (H( S B (V) 1))
JE (@] <€C  s€ltr(c,i+1]

From the above equations, note that each outer summand is
a product of polynomials in v(] for a fixed j. Consider any
vector u < t where u € (Z+)|C| - for each such unique
vector u, we will obtain a corresponding monomial (fixing j7)
on expansion. Thus, expanding the polynomial and using the
fact that (4 = Hiec ﬂtﬂ(cyi)’uw(c$i)+1 is the coefficient of the
monomial Hiec(vgj))“ﬂcw” for all j € [¢], we obtain proof
of the lemma. O
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Lemma 9: For each fixed set C C [n] and each vector
t € (Z1)I°l, we can compute > el Hiec(vz@))tﬂcvi) pro-
vided for all u € (Z1)ICl satisfying u < t, the quantities
E[l;ccx; " are pre-computed.

Proof We will prove this lemma by induction. For
the base case we have from Lemma 8 that (Ex; =
B2 Z]e 0 v + B1,1. Hence de[e] V( ) can be computed
from Ex; by using the followmg equation:

R (EIExl 51,1).

J€lf]

Now suppose for all vectors u € (Z1)ICl satisfying u <
t, the lemma statement is true. Consider another vector z €
(Z+)I€l such that there exists an index j € |C| for which
z; =t; + 1 and z; = t; for all  # j. From the statement of
Lemma 8, we know that

EHX:w(c,i) _ %Z Cz,u . ( Z H @ uﬂ.<c 7>>

i€C u<z £)ieC
where Gu = Jliee 5zﬂ(c,m,uﬂ(c,i)+1' From our
induction  hypothesis, we have already computed
el Hiec(vgj))“ﬂaﬂ for all u < z (the set
fu € @Hel | u < z}is equivalent to the set
{u e (ZH)l | u < t}). Since EJ[;cox; " is already
pre-computed, we can compute 3 H'LEC( v ))Zﬂc 0 as

follows:

B[ =Y G ( 3 H(VE”)“““-”)

ieC u<z jE[f)ieC
)ZW(C,i)) .

= Cz,z : ( Z H(V(])

jefe]iecC
This completes the proof of the lemma. O
For a set of vectors U, recall that we defined Sy(i) = {u €
U : u; # 0} to denote the multi-set of vectors in ¢/ that has a
non-zero entry at the i*" index. We will use the aforementioned
notation for the set of unknown vectors V - we will ignore the

subscript V for simplicity of notation.
Lemma 10: For each fixed set C C [n], we can com-
pute |ﬂz€C S(i ’ provided for all p € [{], the quantity

ZVEV ( Hiec Vi )
Proof: Let us fix a particular subset C C [n]. Now, let us
define the quantity

ACt— Z H (J)

c'Ccle i€C
e]-17¢

is pre-computed.

Notice that Ac; > 0 if and only if there exists a subset C' C
[4],]C’| = t such that v{”) # 0 for all i € C,j € C'. Hence,
the maximum value of ¢ such that Ac; > 0 is the number of
unknown vectors in V having non-zero value in all the indices
in C. In other words, we have that

(S

ieC

=maxt- 1[A¢,; > 0].
te[l]

Let ¢t* be the maximum value of ¢ for which A¢c, > 0.
We will have Ac 4+ > 62I°l (from Assumption 1). It is easy to
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p
recognize )y (Hiec vf) as the power sum polynomial

of degree p in the variables {]];.. vi}vey. On the other hand,
Ac is the elementary symmetric polynomial of degree ¢ in
the variables {[];.. vZ}vey. We can use Newton’s identities
to state that for all ¢ € [¢],

tAc = Zt:(—l)pﬂAc,tp( > (va)p)

p=1 vey ieC

using which, we can recursively compute Ac; for all ¢ € [¢]
P

if we were given >, (Hiec vf) as input for all p €

[¢]. We can also express Ac; as a complete exponential Bell
polynomial By

Acy = (= Bt(_‘;gvf’_l!<§}gvg>2’
f2|(ZHv§)3,. —(t—1)! (ZHV))
vevieC veviel

O
We are now ready to prove Lemma 6.
lemma (Restatement of Lemma 6): Suppose Assumption 1
is true. Fix any set C C [n]. Let
N 52£|C\

(-1
2(3max(mzflcuszchu) 0

—1
(11 Ge
(r,s)EM 51,8
x (Z<H21?1Xc sz + Z Z )

u<z MeM(z,u) HFGT(M) Cr,r

2Zﬂ(c i)

maxz<2e1e E[ice X;
gev 52

(1>

where gy is a constant that is independent of k and n but
depends on /. There exists an algorithm (see Algorithm 6)
that can compute |, Sy (i)| exactly for the set C with
probability at least 1 — ~ using O(log('y_l(%)w')gg’v)
samples generated according to P,,.

Proof: Fix a particular set C C [n]. Suppose, for
every vector z € (Z+)‘C‘ satisfying z < 201¢, we
compute an estimate U* of E[[,c.x,"“" such that

—Elccx; sl < @, where B, is going to be deter-
mmed later. Recall that in Lemma 10, we showed

BT =3 o (3 T[00)

ieC u<z je[e]ieC
= Guw (D2 L)), @
jE]) ieC

Using the computed U=, We can recursively compute an
estimate V' of e ice (Vi )) =@ for all z € (Z1)ICl
satisfying z < 2{1¢. Let us denote the error in estimation by

€, i.e. we have |VZ — Eje[ﬁ] Hiec(vl(j))zﬂw < €. Now,
we prove the following claim.
Claim 1: We must have
E(I)ll H(r s)EM Cr s
HrGT C" r

z% u<z MeM(z,u)
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Proof: We will prove this lemma by induction. Let e;
be the standard basis vector having a non-zero entry at the
ith index and is zero everywhere else. For the base case,
we have from Lemma 8 that /Ex; = (12 seld v+ By

Since (3’s are known we are going to compute Ve by solving
the equation (Uei = B, 2V + f1,1. Therefore, we must have

(note that by definition, (e, e; = f1,2)
ﬂEXi — Eﬁei = ﬁ1,2(z Vi — ‘761)
JEl

- gq)ei > Bl,QGei

= ﬁl,ZCemey

This completes the proof of the base case. Now, from defini-
tion, (recall that (v = ], ¢ Bar iy in iy +1) We have (e, o, =
(1,2 which completes the proof of the base case. Now suppose
for all vectors u € (Z+)|C| satisfying u < t, the lemma
statement is true. Consider another vector z € (Z*1)I°l such
that there exists an index j € |C| for which z; = t; + 1 and
z; = t; for all ¢ # j. From the statement of Lemma 8§,
we know that

(E ij“(“

ieC

- Z<z,u .

u<z

(> I

jefe]iecC

— G (3 TV

jee]ieC

ww)
z,r( ))

Hence, we must have

Zn(iy _ gz _ ) T
(ﬂngl ) (uzzgw OMICARE

jefe iecC
7)) e (S Tt - 7)
- Cz,zez S gq)z + Z Cz,ueu-
u<z

Now, by using our induction hypothesis, we must have

LDy,
Cz,zez S éq)z + Z Cz,u (

u<z Cu,u

(d, r,s
4 Z Z H(r,s)EM G ) )

v<u MeM(u,v) HTET(M) Cr,r

IIZ<:ZCZU<CZZCUU

oy H(r,s)EM CT’S

Cz,z Hre’T(M) Cr,r

Z(Du H(r S)EM Cr s
HrGT C" r

This completes the proof of the claim. O
Hence, for fixed ®, = ® for all z < 251‘0‘, we get

ase(+E ¥

u<z MeM(z,u)

=

€z <

sz

LDINDY

v<u MeM(u,v)

IDINDY

u<z MeM(z,u)

:>ez_

z.,Z

14 H(r,s)EM CT’S )
HreT(M) C"J‘
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For a fixed ®, let us write € to denote the following quantity:

Ules)eq Srs

A
€ = max q)(
ZSQ[I‘C‘

u<z QeQ9(z,u) re7(Q)

Consider a fixed subset of indices C C [n] and a fixed vector
t € (Z*)ICl. Using the fact maxyey e[, vZ < R% we have
that

¢ 3 () < e

vey ieC
and
Acy = Z H (J) < >R2(t+|C|) < ol R2(t+(C)
c'cle ieC
=<

We can compute an estimate Ac ; of Ac; by using V?P1icl
in the following set of recursive equations

t

tﬂcyt = Z(_l)p+1ﬂc7t_p‘72pl‘c|.
p=1
Claim 2:
A (t-1)
’Ac,t —Acy| < 6(3 rnax(€R24|C|,QfR€+\CI)) 4
for all ¢t € [{].

Proof: We will prove this claim by induction. For the
base case i.e. t = 1, notice that

‘721‘“ _ Z HV?

veviel

<e.

’Ac,l - Ac,1’ <

Now, suppose for all ¢ < k, the following holds true:
—~ t—1
‘Ac’t — Ac,t’ < 6(3 max(ﬂRwC‘,QeR“‘cl)) tl.
For ease of  notation, let wus denote

3max(¢/R¥ICI 2¢RICI) In that case, for t =
we must have

a =

kE+ 1,

t ‘AC,t —Ac

< Z ’&C,t*prﬂpl‘c‘ —Acit—p- Z (va)p

p<t vev ieC

- |pare _ Z (HV ) (k+1)

vey el

> (HV?)p e Acy +a

vey ieC

<e+Z‘

p<t—1

Fe- 2RREHICD 4 2qt2(p 1)!‘

<e+ Z eal™

p<t—1

1)1¢RIC]

tfl 1< eat=V.

Hence, Ac:| < ea’~1t! thus proving our claim. O
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Hence, to identify ¢* correctly, we must have
—1 2£|C|
)E! 0

(e
e<3 max(¢RC!, 2%“'0‘))

o 52£|C|
— S

(£-1)
2(3max(m2ew|,2«Ré+\CI)) 0

-1
H(r s)EM Crvs
(Zggﬁc Cz z Z Z

u<z MeM(z,u) HrGT(M) Cr,r

where we inserted the definition of ®. Therefore, for every
vector z € (Z1)I° satisfying z < 2£l‘c|, in order to compute
U of E[Licc % v guch that [U% — Ece %; <,
the number of samples that is sufficient with probablhty 1—7
is going to be

Zr(C.i)

QZw(c i)
maXz<2€1‘c‘ E HlEC

@2

O(1og(y~(20)/°!)

O

Theorem (Restatement of Theorem 1): Let V be a set of /

unknown vectors in R™ satisfying Assumption 1. Let F,,, =
Q1([n]) U Qm(Uvevsupp(v)) and

§2£m

B, = :
(1)
2(3€ max(R2tm QéRe‘*‘m)) £

-1
1 ¢
(r,s)eM 51,8
( RO NP3 )

u<z MeM(z,u) HFET(M) Cr,r

22 (i)
ElLiccx;

fg_]y = max
z<20110g p41 q)120g£+1
CEFlog 41

where f,y is a constant that is independent of sparsity &
and ambient dimension n but depends on ¢. Then, there
exists an algorithm (see Algorithm 6 and 2) that achieves
Exact Support Recovery with probability at least 1 — ~
using O log(y~1(20)18+1(n 4 (Ek)long))fé,v)
generated according to P,,.

Proof: The proof follows directly from Corollary 1 and

samples

Lemma 6. O
Corolloary (Restatement of Corollary 3): Consider the mean
estimation problem where Ex.p [x; | t = j] = v() Let

V be a set of ¢ = O(1) unknown vectors in R™ satlsfymg
Assumption 1 and f;y be as defined in Theorem 2. Then,
there exists an algorithm (see Algorithm 6 and 2) that with
probability at least 1 — «, achieves Exact Support Recovery
using O(poly log(ny~1)poly(R~1) fg,y) samples generated
according to P,,.
Proof: We can re-scale the samples (dividing them by
R) so that Assumption 1 will be satisfied with 6’ = §/R
and R’ < 1. Since / is a constant, ®joq, = O(poly(6R™1)).
Therefore, the corollary follows from Theorem 1. O
lemma (Restatement of Lemma 7): Suppose Assumption 1

is true. Fix any set C C [n] Let

IDINDY

u<z MeM(z,u)

4 H(r,s)eM CI‘75 ) -1
HrET(M) Cr,r
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QZw(c i)
B, o, & aXa<2c Elliccx;
Z,V - @2

where hyy is a constant independent of k£ and n but depends
on (. There exists an algorithm (see Algorithm 7) that can
compute if ‘ﬂzGC (z)‘ > 0 correctly for the set C with
probability at least 1 — ~ using O(heylogy~!) samples
generated according to P,.

Proof: Fora ﬁxed ordered set C C [n], consider the statis-
tic Y veyp [Lice V2 IE Dy ey [Lice V7 > 0, then [MieeS(i)] >
0 and otherwise, it > vev Lice Vi =0, then [NiecS(i)| = 0.
Hence it suffices to estimate correctly if > ey [Licevi >
0 or not. From Lemma 9, we know that for each set C C [n],
we can compute Y. [Liec(v (J))2 provided for all u €
(Z+)I° satisfying u < 21)¢|, the quantity EJ], . x; "
pre-computed.

Suppose, for every vector z € (ZH)l€l satisfying z <
21)¢|, we compute an estimate U” of EJ] "(c Y such
that ‘U —EJ]cex; ™"

determined later. Using the computed U ?’s, we can compute
an estimate V# of e Hiec(v vz forall z € (Z+)C!
satisfying z < 21)¢|. As before, let us denote the error in esti-

Z]E[l] H'LEC( (j)) W(C'i)‘ <

€. Note that we showed in Lemma 10 that for fixed ®, we get
for all z < 21 ¢,

is

iec X
< & where @ is going to be

mation by €, i.e. we have ’Vz —

¢ H(r,s)eM Crvs )

= q’( Cor

z,Z u<z MEM(Z u) I'ET(M)
Note that the minimum value of Y-, [];cc v? is at least
62I€I and therefore, it suffices €, to be less than §2/€I /2. Hence,
it is sufficient if

§2I€
d < max —(

Z<21‘c‘

(T ayem Gy
Y )

u<z MeM(z,u)

Cz z HrGT(M) C"»I‘
Now, we use Lemma 14 to complete the proof of the lemma
(similar to Lemma 10)
O
thmu (Restatement of Theorem 2): Let V be a set of
unknown vectors in R” satisfying Assumption 1. Let F,,, =
Q1([n]) U @m(Uveysupp(v)) and

= max —(C + E E
<21
z m Z,Z u<zM€M(Z Ll)
2z
EH X 7w (C,1)
hev L pax —--€CT

z2<21, P2
CeFy

Cl e s)em Crs\ 1
®,, i sem )

HrET(M) Cr,r

where h;z,v is a constant independent of k£ and n but depends
on /. Accordingly, there exists an algorithm (see Algorithm 7
and 4) that achieves maximal support recovery with probability
at least 1 — ~y using O(hzvlog(fy_l(n + (Kk:)[))s
generated from P,,.

Proof: The proof follows from Lemma 7 and Corollary 2.
O

samples
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APPENDIX B
MISSING PROOFS FROM SECTION III

Proof of Lemma 2 when | U;cc S(i)| is provided:
Suppose we are given | U;ec S(i)| for all sets C C [n]
satisfying |C| < s. Notice that the set N;ecS(4) is equivalent
to the set occ(C, 1)) or the number of unknown vectors
in ¥V whose restriction to the indices in C is the all one
vector and in particular, occ((i),1) = S(¢). Recall the
principle of inclusion and exclusion - for any family of ¢ sets

A1, As, ..., As, we must have
t t "
UA| =Y (-1 3 N A -
=1 u=1 1< <ig<--<iy <t [b=1

We now show using induction on s that the quanti-
ties {|U,cs0cc((i),1)| V T C [n],|T| < s} are sufficient to
compute |occ(C, a)| for all subsets C' of indices of size at
most s, and any binary vector a € {0, 1}=%.

Base case (t = 1):

The base case follows since we can infer |occ((7),0)| =
¢ — Jocc((),1)] from |occ((i),1)| for all i € [n].

Inductive Step: Let us assume that the statement is true
for r < s i.e., we can compute |occ(C,a)| for all subsets
C satisfying |C| < r and any binary vector a € {0,1}="
from the quantities {|J,cgo0cc((i),1)| VT C [n],|T] <r}
provided as input. Now, we prove that the statement is true
for » 4+ 1 under the induction hypothesis. Note that we can
also rewrite occ(C, a) for each set C C [n],a € {0,1}/€] as

N SG) ) SG)F

jec jec\e

occ(C,a) =

where C' C C corresponds to the indices in C for which the
entries in a is 1. Fix any set 41,42,...,i.+1 € [n]. Then we

can compute ’ﬂ;g S (zb)‘ using the following equation:

r+1 r
T+3 ﬂ S Zb Z 1)u+1
u=1
r+1
> ﬂS% U S|
J1:925 - Ju€{i1,82,. 0 8rp 1} 16=1 b=1

J1<j2<-<ju

) iT+1}7
we can compute imzbgy S(iv) N, ey S(ip)¢| using the follow-
ing set of equations:

Finally for each proper subset } C {iy,ia,...

() SG) () S

WY i, €Y

=N s (U s)
W gy i, €Y

=N st~ | N s (U s@)
gy inEY i, €Y

=N s6@)| | U (N s@Ns6)|-
gy €Y W gY

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 2, FEBRUARY 2025

The first term is already pre-computed and the second term is
again a union of intersection of sets. for each j, € ), let us
define H(jp) := ;,zy S(iv) (1S(jp). Therefore we have

= [

J1,J25-Ju€Y |b
J1<J2 < <Ju

4

U H(]b) — Z(_1>u+1

Jv€Y u=1

We can compute inbey H(jb)‘ because the quantities on
the right hand side of the equation have already been pre-
computed (using our induction hypothesis). Therefore, the
lemma is proved.
O
Proof of Lemma 2 when | N;cc S(i)| is provided:
Suppose we are given | N;ec S(7)| for all sets ¥V C [n]
satisfying |V| < s. We will omit the subscript V from hereon
for simplicity. As in Lemma 2, the set N;ccS(4) is equivalent
to the set occ(C, 1¢|) or the number of unknown vectors in
V whose restriction to the indices in C is the all one vector
and in particular, occ((¢),1) = S(i). We will re-use the
equation that for ¢ sets Aj, Ao, ..., A;, we must have

Y N4

1<y <ig <+ <iy<t |b=1

t

U

=1

t

=S (-

u=1

We now show using induction on s that the quanti-
ties {|;cs 0cc((4),1)| V T C [n],|T| < s} are sufficient to
compute |occ(C, a)\ for all subsets C' of indices of size at
most s, and any binary vector a € {0,1}=%.

Base case (t = 1):

The base case follows since we can infer |occ((7),0)| =
¢ —|occ((2),1)] from |occ((4),1)] for all ¢ € [n].

Inductive Step: Let us assume that the statement is true
for r < s i.e., we can compute |occ(C,a)| for all subsets
C satisfying |C| < r and any binary vector a € {0,1}="
from the quantities {|(),c50cc((i),1)] VT C [n],|T| < r}
provided as input. Now, we prove that the statement is true
for » 4+ 1 under the induction hypothesis. Note that we can
also rewrite occ(C,a) for any set C C [n],a € {0, 1}/l as

N SG) () SG)

Jjec’ jeC\C’

occ(C,a) =

where C' C C corresponds to the indices in C for which the
entries in a is 1. Fix any set 41,4a,...,i.4+1 € [n]. Then we

can compute ‘U;ii S (ib)’ using the following equation:

r+1 r+1 u
U sGn)|=> (=1t > () SG)
b=1 u=1 J1sd2sedu€{insiz,iry1 } 16=1

J1<je<-+<ju

Finally for any proper subset Y C {1,142, ..., %41}, We can
compute ‘ﬂibgyS(ib) ﬂibeyS(ib)C‘ using the following set

of equations:

() Stiv) () SCiv)*

i EY i, €Y
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=N s (U s@)
i, ZY €Y

=N s~ N s (U s)
i ZY i, &Y i, €Y

=N s - U (N stNs@)|-
’ngy ibey 'ngy

The first term is already pre-computed and the second term is
again a union of intersection of sets. For any i;, € ), let us
define H(j) :=;, ¢y S(iv) (1S(jp). Therefore we have

b4

U ") = S~y

JbEY u=1

() Hiv)| -

b=1

2.

J1,0250-Ju€Y
71<g2<<Ju

We can compute ‘Ujbey H(jb)‘ because the quantities on
the right hand side of the equation have already been pre-
computed (using our induction hypothesis). Therefore, the
lemma is proved.
O
Proof of Corollary 1: We know that all vectors v € V
satisfy ||v]lo < k as they are k-sparse. Therefore, in the first
stage, by computing |S(¢)| for all i € [n], we can recover the
union of support of all the unknown vectors Uy cysupp(v)
by computing 7 = {i € [n] | S(i) > 0}. The probability
of failure in finding the union of support exactly is at most
n7y. Once we recover 7, we compute |U;ecS ()| for all
C C7,|C| <logl+1 (or alternatively | N;ec S(i)| for all
C CT7,|C| <logl+1). The probability of failure for this this
event ((k)'°&“*1y, From Lemma 1, we know that computing
|UiecS(i)| for all C C [n],|C|] < logf + 1 (or alternatively
| Nice S(@)| for all C C 7, |C| < logl + 1) exactly will allow
us to recover the support of all the unknown vectors in V.
However |U;ccS(¢)] = 0 for all C C [n] \ T provided 7
is computed correctly. Therefore, we can recover the support
of all the unknown vectors in V with Tlog~~! samples
with probability at least 1 — ((¢k)'°8“+1 + n)~. Rewriting the
previous statement so that the failure probability is v leads to
the statement of the lemma. O
Proof of Corollary 2: Again, we know that all vectors
v € V satisfy ||[v]o < k as they are k-sparse. Therefore,
in the first stage, by computing if |S(z)| > 0 for all ¢ € [n],
we can recover the union of support of all the unknown vectors
Uyeysupp(v) by computing 7 = {i € [n] | S(i) > 0}. The
probability of failure in finding the union of support correctly
is at most n7y. Once we recover 7 correctly, we compute
|NiceS(4)| for all C C T,|C| < ¢. The probability of failure
for this event (¢k)*~. From Lemma 5, we know that computing
|NiecS(4)] for all C C [n],|C|] < ¢ exactly will allow us to
recover the support of all the unknown vectors in V. On the
other hand, we will have |N;ccS(i)| = 0 for all C C [n]\ T
provided 7 is computed correctly. Therefore, we can achieve
maximal support recovery of all the unknown vectors in V with
Tlog~y~! samples with probability at least 1 — ((¢k)¢ 4+ n)y.
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Rewriting, so that the failure probability is v leads to the
statement of the lemma. O

Proof of Lemma 5: Consider the special case when
[Maximal(V)| = 1 i.e. there exists a particular vector v in V
whose support subsumes the support of all the other unknown
vectors in V. In that case, for each set C C A € Maximal(V),
IC| < ¢, we must have that ||J;cc S(i)| > 0 (as there
is only a single set in Maximal(})). On the other hand,
if |Maximal(V)| > 2, then we know that Maximal(V) is
(£—1)-good and therefore, for each set A € Maximal(V), there
exists an ordered set C and an index j C Uaremaximai(v) A’
IC| < ¢ —1 such that C C A but C ¢ A’ for any other
set A’; hence |(,ccS(i)| > 0 but ‘ﬂiecu{j} S(Z)’ = 0.
In other words, there exists a set of size ¢ that is a subset
of the union of sets in Maximal()’) but there does not exist
any unknown vector that has 1 in all the indices indexed by
the aforementioned set. Again, Algorithm 3 precisely checks
this condition and therefore this completes the proof. O

APPENDIX C
PROOF OF LEMMA 1 (THEOREM 1 IN [23])

We will start with a few additional notations and definitions:

For a set of unknown vectors V = {v! ,v2 ... v’} let
A € {0,1}™*¢ denote the support matrix corresponding to V
where each column vector A; € {0, 1}" represents the support
of the i*" unknown vector v'.

Definition 4 (p-identifiable): The ith column A; of a binary
matrix A € {0,1}"** with all distinct columns is called p-
identifiable if there exists a set S C [n] of at most p-indices
and a binary string a € {0,1}” such that A;|s = a, and
Ajls # a for all j # 1.

A binary matrix A € {0,1}"*¢ with all distinct columns is
called p-identifiable if there exists a permutation o : [¢] — [{]
such that for all 4 € [¢], the sub-matrix A’ formed by deleting
the columns indexed by the set {o(1),0(2),...,0(i—1)} has
at least one p-identifiable column.

Let V be set of ¢ unknown vectors in R", and A €
{0, 1}™** be its support matrix. Let B be the matrix obtained
by deleting duplicate columns of A. The set V is called p-
identifiable if B is p-identifiable.

Theorem (Theorem 2 in [23]]): Any n X £, (with n > {)
binary matrix with all distinct columns is p-identifiable for
some p < log/.

Proof: Suppose A is the said matrix. Since all the
columns of A are distinct, there must exist an index ¢ €
[n] which is not the same for all columns in A. We must
have |occ((2),a)| < £/2 for some a € {0,1}. Subsequently,
we consider the columns of A indexed by the set occ((7),a)
and can repeat the same step. Evidently, there must exist
an index j € [n] such that |occ((¢),a)] < ¢/4 for some
a € {0,1}2. Clearly, we can repeat this step at most log ¢
times to find C C [n] and a € {0,1}51°8 such that
locc(C,a)] = 1 and therefore the column in occ(C,a) is
p-identifiable. We denote the index of this column as o(1)
and form the sub-matrix A' by deleting the column. Again,
A' has ¢ — 1 distinct columns and by repeating similar
steps, A' has a column that is log(¢ — 1) identifiable. More
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generally, A’ formed by deleting the columns indexed in the
set {o(1),0(2),...,0(i—1)}, has a column that is log(¢ — 1)
identifiable with the index (in A) of the column having the
unique sub-string (in A?) denoted by o (). Thus the lemma is
proved. O

A. How Algorithm 1 Works

Next, we present an algorithm (see Algorithm 1) for support
recovery of all the £ unknown vectors V = {v',... v’} when
V is p-identifiable. In particular, we show that if V' is p-
identifiable, then computing |occ(C,a)| for every subset of
p and p + 1 indices is sufficient to recover the supports.

The proof follows from the observation that for any subset
of p indices C' C [n], index 7 € [n] \ C and a € {0,1}?,
jocc(C, a)| = loce(C'U {7}, (a, 1))| + occ(C U {5}, (a, 0))].
Therefore if one of the terms in the RHS is 0 for all j € [n]\C,
then all the vectors in occ(C, a) share the same support.

Also, if some two vectors u,v € occ(C,a) do not have
the same support, then there will exist at least one index j €
[n] \ C such that u € occ(C' U {j}, (a,1))| and v € occ(C' U
{j},(a,0)) or the other way round, and therefore |occ(C U
{7}, (a,1))| € {0,]occ(C,a)|}. Algorithm 1 precisely checks
for this condition. The existence of some vector v € V (p-
identifiable column), a subset of indices C' C [n] of size p,
and a binary sub-string b € {0,1}=P follows from the fact
that V is p-identifiable. Let us denote the subset of unknown
vectors with distinct support in V by V!,

Once we recover the p-identifiable column of V!, we mark
it as u' and remove it from the set (if there are multiple
p-identifiable columns, we arbitrarily choose one of them).
Subsequently, we can modify the |occ(-)| values for all S C
[n],|S| € {p,p+ 1} and t € {0,1}? U {0,1}PT as follows:

locc® (S, t)| £ ]oce(S, t)| — |occ(C, b)| x 1[supp(u')|s = t].
3)

Notice that, Equation 3 computes |occ?(S,t)| =
[{vi € V? |supp(v’)|s =t}| where V? is formed by
deleting all copies of u! from V. Since V! is p-identifiable,
there exists a p-identifiable column in V! \ {u'} as well
which we can recover. More generally for ¢ > 2, if u?=! is
the p-identifiable column with the unique binary sub-string
b?~! corresponding to the set of indices C?~!, we will have
for all S C [n],|S| € {p,p+ 1} and t € {0,1}? U {0, 1}P*+1

locc?(S, t)[ £ |occ?™ (S, t)| — [occ?H(CUT, BT
x 1[supp(u?™h)|s = t]

implying |occ?(S,t)| = |{v’ € V¥ | supp(v’)|s = t}| where
V4 is formed deleting all copies of u',u?,...,u?"! from
V. Applying these steps recursively and repeatedly using the
property that ) is p-identifiable, we can recover all the vectors
present in V.

APPENDIX D
TECHNICAL LEMMAS

Lemma 11 (Hoeffding’s Inequality for Bounded Random
Variables): Let Xi,Xo,...,X,, be independent random

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 2, FEBRUARY 2025

variables strictly bounded in the interval [a,b]. Let p =
m~1 Zl EX;. In that case, we must have

1 — 2mt?
Pr(| L S| 2 ) <20 (- ),
T m; wl = < Z2exp

(b—a)?
Lemma 12 (Gaussian Concentration Inequality): Consider a
random variable Z distributed according to N(0,0?). In that
case, we must have Pr(|Z| > t) < 2exp(—t?/2) for any
t>0.
Lemma 13 (Gaussian Anti-Concentration Inequality): Con-
sider a random variable Z distributed according to N'(0, o2).

In that case, we must have Pr(|Z| < t) < \/%

t< U\/Tr/\/i.

Proof: By simple calculations, we can have
—22 /207 2 ¢

t
e
PrZ<t§/ ——dx <)==
(121 <) o —

t
— for any

O

Finally, we will also use the following well-known lemma
stating that we can compute estimates of the expectation of
any one-dimensional random variable with only a few samples
similar to sub-gaussian random variables.

Lemma 14: For a random variable x ~ P, there exists an
algorithm (see Algorithm 5) that can compute an estimate u
of Ez such that |u — Ex| < e with O(logy 'Ex?/e?) with
probability at least 1 — 7.

Proof of Lemma 14: Suppose we obtain m independent
samples (M), z(®) .. 2™ ~ P We use the median of
means trick to compute u, an estimate of Ex. We will partition
m samples obtained from P into B = [m/m’] batches each
containing m’ samples each. In that case let us denote S’ to
be the sample mean of the ;' batch i.e.

2(5)

= > —

s€Batch j

We will estimate the true mean Ex by computing u where
u = median({S7}%,). For a fixed batch j, we can use
Chebychev’s inequality to say that
2
Pr(’Sj—Ex| 26) < E%gl
te 3

for t = O(Ex?/€?). Therefore for each batch j, we define an
indicator random variable Z; = 1[|S7 — Ez| > ¢] and from
our previous analysis we know that the probability of Z; being
1 is less than 1/3. It is clear that ]Ezjil Z; < B/3 and on
the other hand |u — Ez| > € iff Zle Z; > B/2. Therefore,
due to the fact that Z;’s are independent, we can use Chernoff
bound to conclude the following:

Pf(|U—E$|26) SPr( iZj—]EiZj ZEZJZ_le)
Jj=1 Jj=1

< 2e~B/36,

Hence, for B = 36log~ ™!, the estimate u is at most € away
from the true mean Ex with probability at least 1—-. Therefore
the sufficient sample complexity is m = O(logy~'Ez?/€?).

O
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